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A SHIFTED BLOCK LANCZOS ALGORITHM FOR SOLVING
SPARSE SYMMETRIC GENERALIZED EIGENPROBLEMS*

ROGER G. GRIMES!, JOHN G. LEWISt, AND HORST D. SIMON!

Abstract. An “industrial strength” algorithm for solving sparse symmetric generalized eigen-
problems is described. The algorithm has its foundations in known techniques in solving sparse
symmetric eigenproblems, notably the spectral transformation of Ericsson and Ruhe and the block
Lanczos algorithm. However, the combination of these two techniques is not trivial; there are many
pitfalls awaiting the unwary implementor. The focus of this paper is on identifying those pitfalls and
avoiding them, leading to a “bomb-proof” algorithm that can live as a black box eigensolver inside a
large applications code. The code that results comprises a robust shift selection strategy and a block
Lanczos algorithm that is a novel combination of new techniques and extensions of old techniques.
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1. Introduction. The Lanczos algorithm [22] is widely appreciated in the nu-
merical analysis community [6]-[9], [14], [15], [17], [23], [29], [30], [32], [35], [37] as a
very powerful tool for extracting some of the extreme eigenvalues of a real symmet-
ric matrix H, i.e., to find the largest and/or smallest eigenvalues and vectors of the
symmetric eigenvalue problem

Hz = Az.

It is often believed that the algorithm can be used directly to find the eigenvalues
at both ends of the spectrum (both largest and smallest in value). In fact, many
applications result in eigenvalue distributions that only allow effectively extracting the
eigenvalues at one end of the spectrum. Typical eigenvalue distributions in structural
engineering vibration problems have small eigenvalues of order unity with separations
|Ai+1—A:]| also of order unity, apparently well separated. However, for physical reasons
the largest eigenvalues of these problems are very large, say, @(101%). The convergence

rates for the eigenvalues is determined by the relative separation |’|\—):*;1__>\—>1‘|’|, 0(10719)
for the smallest eigenvalues. We expect and find very slow convergence to the small
eigenvalues, which are the eigenvalues of interest. The dependence of convergence on
relative separation between eigenvalues is often ignored.

It is also often believed that the Lanczos algorithm can be applied to the gener-

alized symmetric problem
Hx =AMz

by using the naive reduction to standard form [16], [32]: factor M into its Cholesky
decomposition M = LLT and then solve the ordinary eigenproblem L='HL Ty =
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Ay. Suppose that we applied this algorithm to the wibration problem of structural
engineering,

(1) Kz =AMz,

where K is the stiffness matrix and M is the mass matrix. We would fail abysmally
for three separate reasons:

e M is very often semidefinite—it may admit no Cholesky factorization.

e Even when M can be factored, the eigenvalues that are desired are often very
badly separated.

e The eigenvectors z must be computed by a back transformation z = L=Ty.
When it exists, L is usually poorly conditioned, which can lead to considerable
numerical error in the back transformation.

When K is positive definite, the vibration problem can be addressed by applying
the usual reduction to the reciprocal problem:

1
(2) Kz =AMz & Mz = 1Ko & LMLy = py,

where L is the Cholesky factor of K and u = % Often this is sufficient as a cure
for the first two problems in (1), because the reciprocals of the eigenvalues are well
separated. Eigenanalysis codes in structural engineering packages [24], [27] have been
built upon this transformation. But this transformation is still inadequate when:

e the model has rigid body modes—K is positive semidefinite and has no

Cholesky decomposition.

e a considerable number of eigenvalues are desired.

e the eigenvalues wanted are not the smallest eigenvalues.

Applications with these characteristics do arise. The stiffness matrix in aerospace
applications often has a six-dimensional nullspace of rigid body modes. Detailed
analyses of structures may require more than just a few eigenvalues and vectors. One
of our test problems is an analysis of a nuclear reactor containment floor, where more
than 200 eigenpairs were needed to adequately model the response of the structure
to a simulated earthquake. Another problem we analyzed was a model of a large
industrial ventilating fan mounted on a large concrete platform, for which we needed
good approximations to the eigenvalues near the fan’s rotational rate, eigenvalues that
are in the interior of the spectrum.

There is a more elaborate transformation of the problem, the spectral transfor-
mation of Ericsson and Ruhe [14], which treats all of these difficulties. The spec-
tral transformation is discussed in detail in §2, where we discuss an extension of
the standard algorithm to buckling as well as to vibration problems. The general
idea behind the spectral transformation comes from considering the shifted problem
(K—oM)z = (A—o)Mz. If we invert (K —o M), we transform the eigenvalues nearest
the shift o into the largest and well separated eigenvalues of the reciprocal problem.
Normally we need only to choose a shift ¢ near the eigenvalues we want. When the
number of eigenvalues is large, the reduced convergence rate of the eigenvalues far-
thest from ¢ makes it worthwhile to choose additional shifts (and factorizations) in
order to search through the spectrum.

Formally we cannot shift at an eigenvalue of the problem, because the shifted
operator is singular. In fact, avoiding even near-singularity is an issue for the choice
of shifts, particularly the very first shift, because shifts very close to eigenvalues are
useful only for computing isolated clusters of eigenvalues.
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In general, a well chosen shift allows us to compute tens of eigenvalues with a
single Lanczos run. There is a complicated tradeoff between the cost of a Lanczos
run, which increases nonlinearly with increasing numbers of steps, and the cost of
computing a new shift and its concomitant factorization. As an example, we consider
the oceanography model (matrix PLAT1919 in the Harwell/Boeing sparse matrix
collection [11]), with four different paradigms for choosing shifts:

e the heuristic described in this paper;

e a conservative modification of this heuristic;

e an aggressive modification of this heuristic;

e a fixed shift—compute all 200 eigenvalues with a single factorization.
All of these analyses begin with a Lanczos run using the factors of A — .00017 to
find the eigenvalues of (4 — .00017)~!. Table 1 contains the salient results for these
choices, demonstrating the complexity of the tradeoffs and, dramatically, the value of
shifting.

TABLE 1
Computing the 200 lowest eigenvalues in [.0001,.24] of PLAT1919.

Choice of shift Number of Total number of | Execution
Lanczos runs Lanczos steps cost
normal 8 192 208.1
conservative 13 243 257.4
aggressive 8 209 225.5
fixed shift 1 318 5382.2

(These results were obtained on a Sun 4/690 workstation. The code used a blocksize
of three. Execution cost is the sum of central processor (cpu) and input/output (i/o)
processor seconds.)

Shifting can provide reliability as well as efficiency. Each factorization provides
eigenvalue location information in the form of matriz inertias (see §3.1). The collected
inertias from a series of well chosen shifts can provide an independent guarantee on
the success of the eigenvalue computation and can be used to drive the choice of
further shifts and Lanczos runs to ensure that all of the desired eigenvalues have been
computed. Our heuristic strategy for choosing shifts is discussed in §3.

Our goal is a code that can serve as a “black-box” eigenextraction routine in
large applications codes. Eigenvalues cannot be assumed to be simple, so our shifting
strategy is prepared to continue looking at a small piece of the spectrum until it has
determined the full multiplicity of the eigenvalues therein. The shifting scheme and the
Lanczos algorithm interact to ensure that we find an orthogonal basis for the invariant
subspace for each cluster (see §4.3.3). Most importantly, we use a block version of the
Lanczos algorithm. The Lanczos algorithm usually will compute the full multiplicities
of each cluster without any intervention from the shifting strategy, provided that we
have been able to choose a blocksize as large as the largest multiplicity of any cluster
we will encounter.

The block Lanczos algorithm also confronts the problem that applications codes
often use general representations for their data, even when particular machine archi-
tectures would allow or favor alternatives. It is still common for general applications
codes to represent their matrices as “out-of-core.” The block Lanczos code substi-
tutes, almost on a one-for-one basis, matrix-block multiplies and block solves for
matrix-vector products and simple solves. This decreases the i/o cost essentially by
the blocksize.
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Our production eigenextraction code is a synthesis of the ideas of the spectral
transformation and the block Lanczos algorithm. In §2 we begin to address the effects
of the generalized problem on the recurrence. We explain what modifications to the
Lanczos recurrence result from the use of shifted and inverted operators. With the
exception of the development of a spectral transformation for buckling problems, our
presentation is quite standard and is provided for the reader not already familiar with
these results.

We present our heuristic shifting strategy in §3. There are eight subsections:
a discussion of trust intervals and matrix inertias, our basic tools for robustness;
our heuristic for choosing a shift in a generic case; the idea of sentinels, a tool for
ensuring orthogonality of invariant subspaces; heuristics for choosing an initial shift;
heuristics for determining how to expand the primary trust interval; analysis of a
specified finite interval; treatment of various special and pathological cases; and, last,
the modifications needed for the buckling problem.

The special characteristics of our block Lanczos algorithm are discussed in §4.
This considers the effects due to the spectral transformation. One major problem is
that vectors must be orthonormalized with respect to an inner product defined by
a positive definite matrix M. We discuss the issues associated with implementing
M -orthonormalization of vectors in the basic block Lanczos algorithm, including the
further precautions needed to allow cases where M induces only a seminorm, in §4.1.

The block Lanczos recurrence by itself produces only a block tridiagonal matrix
T. In §4.2 we describe how to compute eigenvalue and vector approximations, and
error bounds on these approximations, from 7" and the Lanczos vectors. Section
4.3 contains our approach for dealing with the loss of orthogonality in the Lanczos
vectors, with a novel combination of various reorthogonalization schemes that work
effectively with the unusual distributions of eigenvalues that result from the spectral
transformation. Section 4.4 concludes with discussions of when to end and how to
start the recurrence. The integration of all of these techniques is a block Lanczos
recurrence that will effectively find a limited number of eigenvalues and corresponding
eigenvectors of a spectrally transformed operator.

We close with numerical experiments solving a small set of eigenproblems obtained
from applications codes.

2. The spectral transformation block Lanczos algorithm. The eigenvalue
problem in vibration analysis is given as

(3) Kz =AMz,

where K and M are symmetric matrices, and M is positive semidefinite. Usually only
the smallest eigenvalues of (3) are wanted, but they typically have very poor relative
separation, rarely better than O(107°). A priori estimates for the rate of convergence
predict very slow convergence at the desired end of the spectrum. We can obtain
rapid convergence to the desired eigenvalues by using the spectral transformation [14],

[27] of (3).

2.1. The spectral transformation for vibration problems. Consider the
problem

(4) M(K —oM) 'Mz = yMez,

where o, the shift, is a real parameter. Assume for the moment that M is positive
definite. Tt is easy to verify that (A, ) is an eigenpair of (3) if and only if (/\L z) is

—o’
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an eigenpair of (4). Hence, the transformation of the eigenvalue problem from (3) to
(4) does not change the eigenvectors, and the eigenvalues are related by

(5) =
The form of the spectral transformation is dictated by our need to be able to apply
the Lanczos algorithm even when M is semidefinite. Other advantages of this form
are well documented in [38].

The main advantage of applying the Lanczos algorithm to (4) instead of to (3)
becomes clear when the effect of the spectral transformation on the spectrum is con-
sidered. The results in Table 2 demonstrate this in detail. These are the values
obtained using the initial shift described in §3.4; the generalized eigenproblem is the
model of a nuclear reactor containment floor, given by the stiffness and mass matrices
BCSSTK26 and BCSSTM26, respectively, from the Harwell-Boeing sparse matrix
collection [11]. (We denote the generalized eigenproblem by BCSST_26.)

Relative separation is affected dramatically by the spectral transformation. The
smallest eigenvalues are transformed into eigenvalues with good relative separation,
even though their absolute separation is decreased. In addition, eigenvalues far from
the shift are transformed to poorly separated values near zero. This spread of the
eigenvalues ensures rapid convergence to the eigenvalues near o. This example clearly
demonstrates that the shift does not have to be very close in an absolute sense to
work well.

TABLE 2
Vibration spectral transformation of BCSST_26, 01 = 385.3.

Original Transformed
7 Ai i gap relative gap gap relative gap
1 46x10° | 24x107* | 6.4x10° | 1.2x107! | 14x107* | 6.0x107!
2 11x10* | 9.4x107° | 25x10® | 46x 1071 | 2.2x107¢ | 9.2x107°
3 11x10* | 9.2x107% | 25x10% | 46x1071? | 2.2x107¢ | 9.2x107°
1920 | 3.0 x10™ | 3.3x1071% | 36x 10! | 6.7x107* | 3.9x 10718 | 1.7x 1071*
1921 | 3.1 x10™ | 3.3x1071% | 36x 10! | 6.7x107* | 3.9x 10718 | 1.7x 1071*
1922 | 5.4 x 10" | 1.8 x1071% | 24x 10" | 44x 107! | 1.4x 10715 | 6.0 x 10712

The primary price for this rapid convergence is the cost of a factorization of
K — oM. The transformation M (K — o M)~ M is realized implicitly as a sequence
of operations in which we compute M@ for a block of vectors () or solve the linear
systems (K — oM)X = . These operations are usually realized by independent
subroutines, which allow tuning the matrix factorization and multiplication routines
to the class of problem under consideration.

We must generalize the Lanczos algorithm itself to solve the transformed gen-
eralized symmetric eigenproblem. We make this generalization in three steps. We
will first consider the ordinary block Lanczos algorithm for a symmetric matrix H.
Next we consider a direct generalization of the Lanczos algorithm for an arbitrary
generalized symmetric eigenproblem Hz = AMxz, where we assume temporarily that
M is positive definite. In these first two steps the issue of shifting disappears for the
moment. In a third step we consider the much more effective form that results when
H is a spectral transformation operator.
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2.2. Basic block Lanczos algorithm. Consider first the ordinary eigenvalue
problem

Hzr = Az,

where H is a real symmetric linear operator. An important characteristic of the Lanc-
zos algorithm is that H is not required explicitly. All that is required is a subroutine
that computes Hy for a given vector y. The block Lanczos iteration with blocksize p
for an n x n matrix H is given in Fig. 1.

Initialization:
Set Qo =0
Set Bl =0

Choose R; and orthonormalize the columns of Ry to obtain @
Lanczos Loop:

For j=1,2,3...do
Set U]' IHQ]'—Qj_lBJT
Set 4; = QJT U;
Set Rj11 = U; — QjA;, the residual
Compute the orthogonal factorization ;41841 = Rj41,
where Bj1 is upper triangular and ;41 is orthogonal
End loop

F1G. 1. Basic block Lanczos algorithm.

The matrices @), U;, R; for j =1,2,... are n x p, whereas A; and B; are p x p,
with A; symmetric.

This formulation of the Lanczos loop is the one least susceptible to roundoff errors
[31] and is the form that should be used in computation. In exact arithmetic, however,
U; and R;4; can be eliminated from the Lanczos loop and the recurrence becomes

(6) Qj+1Bj11 = HQ; — Q;Aj — Q1 B].
This three-term recurrence simplifies theoretical discussion. It is shown in [6], [17]
that the combined column vectors of the matrices Q1,Q3, . .., @j, the so-called Lanc-

zos vectors, form an orthonormal set. The computational efficiency of the Lanczos
algorithm rests on the fact that these vectors can be computed simply, with a fixed
amount of work per iteration step.

The blocks of Lanczos vectors collectively form an n x jp matrix Q;, where

Q] = [Ql) Q?) Q3) e )Q]]
The algorithm also defines a jp x jp block tridiagonal matrix 7}:

A BY 0 ... 0
B, A, BT ... 0
0 ... Bj_i Aj BT

0 ... 0 B A
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Since the matrices B; are upper triangular, 7} is a band matrix with half-bandwidth
p+ 1 (rather than 2p, if the B; were full). The first j instances of formula (6) can be
combined into a single formula:

(7) HQj = Q;T; + Qj1Bj 1 Ef .

Here E; is an n x p matrix whose last p x p block is the p x p identity matrix and
which is zero otherwise.

By premultiplying (7) by QJT and using the orthogonality of the Lanczos vectors,
we see that Q]»THQj = Tj. Hence Tj is the orthogonal projection of H onto the
subspace span(Q;) spanned by the columns of Q;. It can be shown by induction that
span(Q;) = span(Q1, HQ1, H?Q1,..., H71Q1). From a different perspective, the
(block) Lanczos algorithm is a method for constructing an orthonormal basis for the
(block) Krylov subspace determined by H and (. The orthogonal projection of H
onto the (block) Krylov subspace is T;. Hence the eigenvalues of T; are the Rayleigh—
Ritz approximations from span(Q;) to the eigenvalues of H. In addition, if s is an
eigenvector of T, the vector y = Q;s is an approximate eigenvector of H. Viewed
in this form, the Lanczos algorithm replaces a large and difficult eigenvalue problem
involving H by a small and easy eigenvalue problem involving the block tridiagonal
matrix T;.

How good are the approximations obtained by solving the block tridiagonal eigen-
value problem involving the matrix 7;7 An a posteriori bound on the residual is given
by Underwood [17]: Let 6, s be an eigenpair for T}, i.e., Tjs = sf, and let y = Qjs,
then

(8) 1Hy — y0ll2 = || Bj+155l|2,

where s; are the last p components of the eigenvector s. The quantity || Bj 1|2 can
be computed without computing the approximate eigenvector y. Hence, with some
modifications described in §4.2, (8) provides an inexpensive a posteriori error bound.

Formula (8), however, does not guarantee that good approximations to eigenpairs
will appear quickly. Such a priori estimates are provided by the Kaniel-Paige-Saad
theory. Parlett [32] gives the most detailed discussion for the single vector case (p = 1).
The generalizations to the block case were originally derived by Underwood [17].
Extensions to both of these presentations can be found in [36].

2.3. The spectral transformation block Lanczos algorithm. The next step
is to consider the generalized symmetric eigenproblem Hx = AMx. Were we to reduce
the problem to standard form by factoring M, the three-term recurrence (6) would
become

(9) Qj+1Bjp1 = MTVPHMT?Q; — QjA; — Qi1 BY .

If we premultiply (9) by M2 and make the transformation of variables Qj =
M_l/QQj, (9) becomes

MQj1Bjp1 = MYPM™Y2HQ; — MQ;Aj — MQ;-1BY
(10) = HQ; — MQjAj — MQ; 1B} .

The matrices Qj are now M -orthogonal, since Q]TQ] = I implies Q}’MQ] = 1. This
is also a property of the eigenvectors X of this generalized eigenproblem. The approx-

imate eigenvectors will eventually be computed in the subspace span(Q), regardless
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For j=1,2,3...do

Set U; = HQj — MQ;_1BT
Set AJ’ = Q»TJWU]'
Set VV]'_H = U]' - MQ]'A]'

Solve M Rj11 = Wit
Compute the M-orthogonal factorization Q4158541 = Rj41
End loop

Fi1G. 2. Inner loop of generalized symmetric block Lanczos algorithm.

of the form used for the Lanczos recurrence. The inner loop of Lanczos recurrence in
this subspace is given in Fig. 2.

The matrix M appears in several instances to assure the M-orthogonality of the
Lanczos vectors. In particular, the last step requires computing the M-orthogonal
factorization of R;4;. Standard derivations of the orthogonality of the Lanczos vec-
tors easily generalize to show that these vectors are M-orthonormal. It appears that
M~'/2 has disappeared from the standard recurrence, only to reappear at the penul-
timate step in disguise as a solution operation. Indeed, (10) applied to the original
problem Kx = AMz is merely an implicit form of the explicit reduction to stan-
dard form. This is not the case when H is taken as the operator in the spectral
transformation. Substituting M (K — o M)~'M for H gives:

(11) MQj41Bjy1 = M(K —oM) 'MQ; — MQ;Aj — MQ; 1B} .

M now appears in all of the terms in the recurrence. Formally we can premultiply
(11) by M ™! to obtain a recurrence

(12) Qj+1Bj41 = (K —oM)"'MQ; — Q;jAj — Qj-1B]

in which M ~! does not appear. This allows us to apply the same recurrence even
when M is semidefinite. The justification for doing so appears later in §2.4.

At this point we shall no longer put “hats” on the matrices. The actual Lanczos
recurrence for solving (4) is given in Fig. 3.

Assuming the matrix MQ);41 is actually stored (at least temporarily), the algo-
rithm as written requires only one multiplication by M per step and no factorization
of M is required. The last step of the Lanczos loop, the M -orthogonalization of a set
of p vectors, is discussed in §4.1.

Our next goal is to generalize the standard eigenvalue approximation results to the
spectral transformation block Lanczos algorithm. As before, combining all j instances
of (12) into one equation yields

(13) (K —oM)™'MQ; = Q;T; + Qj41Bj 11 E]

where Q;, T;, and E; are defined as in (7). Premultiplying (13) by QF M and using
the M-orthogonality of the Lanczos vectors, it follows that

OTM(K — o M) 'MQ; =1T;.

=g+

Hence, Tj is the M-orthogonal projection of (K — ¢M)~! onto the block Krylov
subspace spanned by the columns of Q;. The eigenvalues of 7} will approximate the
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Initialization:
Set Qo =0
Set Bl =0

Choose R; and orthonormalize the columns of R; to obtain @,

with QT (MQ,) = I,
Lanczos Loop:

For 7=1,2,3...do
Set U]' I([(—O’JW)_l(MQj)—Q]'_lBJT
Set A]' = U]T(JWQJ)
Set Rj.|_1 = Uj - Q]'Aj
Compute Q;41 and (M Qj41) such that
8) Qi Biy - = Rip
b) Qj+1(*/ij+1): I
End loop

Fia. 3. Block Lanczos algorithm for the vibration problem.

eigenvalues of (4). If (s, ) is an eigenpair of Tj, i.e., Tjs = s6, then (y = Q;s,v =
o+ %) will be an approximate eigenpair of (3).
The generalization of the a posteriori residual bound (8) is

(14) (K —oM)"'"My—y0 = Qj41B; 11 E] s.

For 6 # 0 it follows that
. L.
(K —vM)y=—2(K - oM)Qj41Bj11E] s.

The quantity on the right is computable without explicitly computing the eigenvector
y, but only at the cost of a multiplication by K — oM, which is not desirable. In §4.2
we present a better way to obtain a residual bound. (Note that # = 0 corresponds to
an infinite eigenvalue of (3), which should not appear in 7', as discussed below. Very
small @’s correspond to eigenvalues far from the shift. These converge slowly—the
division by @ in the residual bounds reflects their relative inaccuracy.)

2.4. Semidefiniteness in the matrix M. Throughout the discussion above,
we assumed that M was a positive definite matrix. The formulation of the block
Lanczos algorithm for the vibration problem does not require the factorization of M.
Hence the spectral transformation Lanczos algorithm can be applied formally when
M is semidefinite without further modifications. However, the eigenproblem (3) has
infinite eigenvalues. Fortunately, we need only to make the obvious block modification
of the analysis in [29] to remove the infinite eigenpairs from the recurrence. Following
Nour-Omid et al., the starting block for the Lanczos algorithm should be computed
as in Fig. 4.

The eigenvectors of Kz = AMz corresponding to finite eigenvalues consist of a
component orthogonal to the null vectors of M and a component in the nullspace of
M. Ericsson [13] shows that the second, nullspace component is determined by an
algebraic constraint from the non-nullspace component. The constraint expresses the
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Choose Rl
Compute Ri=(K—-—0oM)"'MR,
M -orthogonalize Ry = 1 By

Fic. 4. Computation of the starting block.

fact that all of these eigenvectors lie in the range of (K — o M)~'M. It is shown in
[13], [29] that all of the Lanczos vectors lie in this subspace when the starting vectors
are chosen in this subspace, as above. With this choice of starting block, infinite
eigenvalues have no influence on the block Lanczos algorithm in exact arithmetic.
In §4.2 we add a final postprocessing step to purge the approximate eigenvectors of
components not satisfying the constraint in finite precision arithmetic.

2.5. A spectral transformation for buckling problems. The final point of
this section is the spectral transformation for the buckling problem

(15) K = AKsux,

where K is the symmetric positive semidefinite stiffness matrix and Ky is the symmet-
ric differential or geometric stiffness matrix. Typically only a few eigenvalues closest
to zero are wanted. A simple approach would be to interchange the roles of K and
K and to compute the largest eigenvalues of the problem

(16) Ksx = uKe,

with p = % by applying the simple Lanczos algorithm without shifts [21]. This
reciprocal approach has the same drawbacks as (2). However, it is often effective
when K is positive definite because the number of eigenvalues sought is rarely large.

Shifting and particularly the semidefinite K case require an alternative form of
the spectral transformation [19]. The shifted and inverted problem

(17) K(K — oK) 'Kz = pKz

is solved instead of the original problem (15). The Lanczos recurrence is carried out
using K-orthogonality among the Lanczos vectors. Each multiplication by the mass
matrix M in the vibration case is replaced with a multiplication by the stiffness matrix
K in the buckling case; the rest of the recurrence remains the same.

In the buckling spectral transformation (A, z) is an eigenpair of (15) if and only if

(/\i—o,a:) is an eigenpair of (17). Hence the buckling spectral transformation does not
change the eigenvectors, and the eigenvalues are related by u = ﬁ . These results
can be obtained directly, or by applying the vibration spectral transformation with
reciprocated shifts to the reciprocal problem (16).

The advantages of the buckling spectral transformation are essentially the same
as those of the vibration spectral transformation. Large eigenvalues of the buckling
problem are transformed to a cluster of eigenvalues near unity. Eigenvalues near the
shift o are transformed into well separated eigenvalues, which are easily computed by
the Lanczos algorithm. The major difference is that a shift at ¢ = 0 is not allowed,
since all eigenvalues would be transformed to one. This singularity in the transforma-
tion also affects shifts close to zero; very small shifts should not be taken in this form
of the transformation. Table 3 gives details for the eigenproblem BCSST_28, treated

as if it were a buckling problem. The initial shift is negative because we ordinarily
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expect the first negative eigenvalue to be the eigenvalue of most interest in buckling
problems (see §3.8). Just as in the case of the vibration spectral transformation, we
see that the shift does not need to be close to the desired eigenvalues in any absolute
sense. Indeed, in this case the shift is on the wrong side of the origin and yet still has
the desired effect on relative separation.

TABLE 3
Buckling spectral transformation of BCSST_26, 01 = —385.3.

Original Transformed
7 As i gap relative gap gap relative gap
1 46x10% | 9.23x1071 | 6.4x10% | 1.2x 10711 | 43x 1072 5.6 x 1071
2 1.1x10* | 966x1071 | 25x10% | 46x1071% | 73x107* 9.5 x 1073
3 1.1x10* | 967x107! | 25x10% | 46x 10713 | 7.3x107* 9.5 x 1073
1920 | 3.0 x 104 1.00 x 10° 36x10" | 6.7x107* | 1.6x1071% | 2.0x 10714
1921 | 3.1 x 104 1.00 x 10° 36x10" | 6.7x107* | 1.6 x1071% | 2.0x 10714
1922 | 5.4 x 104 1.00 x 10° 2.4x 10" | 44x1071 | 5.5x1071 | 7.1 x 10712

Except for the different role of the stiffness matrix K, all implementation details
are the same for vibration and buckling analysis. Issues involving the M-orthogonality
of the Lanczos vectors apply equally to the K-orthogonal Lanczos vectors in the
buckling case.
the same way as M in the vibration case, the sequence of Lanczos vectors will be
orthogonal to the space spanned by the eigenvectors corresponding to zero eigenvalues
of K. Hence T; will contain no approximations to the exactly zero eigenvalues of K,
which are also zero eigenvalues of (15), which is desirable.

The eigenvalues of T; approximate the eigenvalues of (17). Hence, if (s,6) is an
eigenpair of T}, that is, Tjs = s, then (%, Q;s) is an approximate eigenpair of (15).
The approximate eigenvectors form a K-orthonormal set. Bounds on the residuals of
approximate eigenpairs are derived in §4.2.

Since the stiffness matrix K is used in the initialization phase in

3. A strategy for choosing shifts. Let us try to find some of the eigenvalues
and eigenvectors of KX = M XA or KX = KsXA. We emphasize the fact that we
want some, not all, of the eigenvalues, because the eigenvector matrix X is almost
always dense. The problem can be written in its general form as:

e find the p eigenvalues of smallest magnitude in [a, ] and their eigenvectors;

or

e find the p eigenvalues of largest magnitude in [a, b] and their eigenvectors; or

e find the p eigenvalues in [a, b] closest to ¢ and their eigenvectors; or

e find all eigenvalues and eigenvectors in [a, b].
Here [a,b] is the computational interval, which can be finite (both a and b finite),
semi-infinite (only one of a and b finite), or infinite (no restrictions at all). Note
that the problem of finding the algebraically least eigenvalues in an interval can be
transformed into one of finding the eigenvalues of smallest magnitude by a suitable
shift of origin.

The purpose of the spectral transformation is to transform the original problem
into one whose dominant eigenvalues represent some of the desired eigenvalues. The
dominant eigenvalues of the transformed problem correspond to the eigenvalues of
the original problem nearest o. There are two major goals that drive our strategy
for choosing shifts. One is efficiency—we would like to choose a sequence of shifts

01,09,...,05 so that the total cost, including the cost of the s factorizations and



12 R. G. GRIMES, J. G. LEWIS, AND H. D. SIMON

the costs of the individual Lanczos runs, is minimized. Our heuristic approach to
measuring and reducing cost is described in §§3.2 and 4.4. The second goal of our shift
selection is robustness. A paramount objective for our design was a code that would
be able to compute all of the desired eigenpairs accurately, except under extreme,
pathological conditions. Furthermore, we wanted a code that could diagnose and
report any failures. The tools we use to create robustness, trust intervals, and matrix
inertias, are an appropriate place to begin the detailed discussion of our choices of

shifts.

3.1. Trust intervals, matrix factorizations, and inertias. Suppose that
during the course of eigenanalysis, we have computed a set of eigenvalues lying be-
tween two shifts o1 and o3. We would like to confirm that these are, in fact, all the
eigenvalues in this interval.

Suppose that C' is a real symmetric matrix, which has been decomposed as C' =
LDLT  where D is diagonal. The inertia of C is the triple (7, v, () of integers, where
7 is the number of positive eigenvalues, v the number of negative eigenvalues, and (
the number of zero eigenvalues. Sylvester’s Inertia Theorem [32, p. 10] states that the
inertia of FTC'F is the same as that of C'. Sylvester’s theorem with F' = L~=7 implies
that the number of negative entries in D is the number of negative eigenvalues from
C. The number of negative terms in D from the LDLT decomposition of C'— a1 gives
the number of eigenvalues smaller than o. Frequently v(C' — o) is called the Sturm
sequence number in engineering references.

It is easy to see that v(C' —o3I) — v(C' — o11I) is the number of eigenvalues in the
interval [, 0] (assuming o1 < o3 and the two factorizations are nonsingular). When
the number of eigenvalues expected in the interval agree with the number actually
computed, we say that the interval [o1, 03] is a trust interval. We want our shifting
strategy to establish a trust interval around all of the desired eigenvalues.

However, applying these Sturm sequence results to generalized eigenproblems
requires a transformation from the ordinary eigenvalue problem CX = XA to the
generalized problem KX = M XA. In order to guarantee that the generalized eigen-
value problems have real solutions, we assume that the pencils are definite; a positive
definite linear combination of K and M must exist. In our code we assume that M
or K is positive semidefinite. We compute K —ocM = LDLT (or K —oK; = LDLY),
and we want to draw conclusions from v(LDLT). The interpretation of v(LDLT) is
given in Table 4; proofs are found in Appendix A. The major surprise in this table
of the appearance of the null space dimension dim(A(-)) when the matrix used as a
norm is only a seminorm. This term corresponds to an assignment of signs to the
infinite eigenvalues in the vibration case and the zero eigenvalues in the buckling case.
We note that in most common vibration cases the term dim(A(M)) does not appear,
because K is positive semidefinite. When it does appear, it is because the infinite
eigenvalues have negative signs, which adds a serious complication to the problem
of finding the algebraically smallest eigenvalues (the infinite eigenvalues are the alge-
braically smallest, but cannot be computed by the recurrence as written). However,
the problem of finding the eigenvalues of smallest magnitude is only slightly more
difficult in this case.

Semidefiniteness in buckling analysis is more significant, because the usual prob-
lem is to find the eigenvalues of smallest magnitude and the zero eigenvalues can-
not be computed directly. The problem still can be solved if dim(N(K)) is known,
either adventitiously or by a partial eigenanalysis of K. The problem of finding
the eigenvalues of smallest magnitude in an interval bounded away from zero is still
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TABLE 4
Interpretation of v(K — o M) or v(K — 0 Kg).

Vibration analysis:

M positive definite # of eigenvalues < ¢
M positive semidefinite | (# of eigenvalues < o) + ~
_ 0 some cases
i { dim(AN'(M))  other cases
Buckling analysis:
K positive definite # of eigenvalues in (0,0) or (c,0)
K positive semidefinite | (# of eigenvalues in (0,0) or (¢,0)) +
_ 0 o of one sign
i { dim(N(K)) o of other sign

well posed.

The result of a successful eigenextraction is a trust interval containing all of the
desired eigenvalues. This goal drives our selection of shifts. We create, as soon as
possible, a trust interval containing some of the desired modes; thereafter, we extend
the trust interval to contain more, and eventually all, of the desired modes. The
process begins with an initial shift at some point ;. The factorization is followed
by a Lanczos run with the shifted operator (K — o1 M)™!M (or its counterpart in
buckling analysis). We will always compute a second factorization, if only to provide
the inertia to close a trust interval. If only some of the desired eigenvalues were
computed during the first Lanczos run, we would like to make the factorization at o4
serve both as a basis for an inertia computation and as the factorization for a new
Lanczos run. Ideally we would choose oy close enough to o that the second Lanczos
run finds all the remaining eigenvalues in the interval; at the same time, we would like
09 to be far enough away from o so that the second Lanczos run stops, for efficiency
reasons, exactly when it has computed all the missing eigenvalues. Thus, a simple
description of our shift selection is that we choose each new shift to mazimally extend
an existing trust interval.

3.2. Shifting to extend a trust interval. In selecting each new shift, we try
to use as much information as we have, including any computed eigenvalues, other
knowledge about the existing trust interval, and additional information from the pre-
vious Lanczos runs. In general, each Lanczos run creates a set of approximations to
eigenvalues, which provide a general picture of the spectrum. Fig. 5 gives an illustra-
tion of the general situation, in which the last Lanczos run was at a shift o; that forms
the right endpoint of a trust interval. The tall, thin lines denote approximations that
we accept as eigenvalues. The lines of medium height and width are approximations
that are not yet acceptable as eigenvalues, though they do have accuracy estimates
good enough to know that at least one significant digit is correct. We call these
Ritz values. (All of the Lanczos approximations are Ritz values, but we abuse the
mathematical term to describe only those approximations that are not good enough
to be accepted, and not bad enough to be meaningless.) The short, broad lines de-
note approximations whose accuracy estimates are larger than their values, which we
ignore.

The shift selection assumes that the inverted spectrum as viewed from ;41 will
be similar to the inverted spectrum as viewed from o;. One view of this similarity
of inverted spectra is that if the Lanczos run from o; computed k eigenvalues to the
right of o; efficiently, we expect that an efficient run at any o;4; should compute
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k eigenvalues to its left. We use the first £ Ritz values to estimate the missing
eigenvalues and place the new shift o;41 between the kth and (k+1)st Ritz values. The
choice of the bisector is intended to avoid a choice extremely close to an eigenvalue.
Furthermore, we use a relaxed tolerance to detect “clusters” of eigenvalues and bisect
clusters rather than Ritz values.

N1 1 S TITTOYNTIY
T

T
o

o; +6

Trust Interval Eigenvalues Ritz Values

FiG. 5. Trust intervals.

If there are fewer than k Ritz values available to the right of ¢;, we use a second
view of the inverted spectra based on the assumption that the “radius of convergence”
should be about the same for each shift. We define § to be the maximum of its
previous value and the distance between the right endpoint of the trust interval and
the rightmost computed eigenvalue (see Fig. 5). Initially, § is set to the problem scale
(see §3.4). Then a second choice for the next shift is o;41 = o; + 2+ 6. We take
the more aggressive choice, the maximum of the two possibilities, in the case where
we still need to compute more eigenvalues than we have knowledge of Ritz values. If
more Ritz values are available than there are eigenvalues left to compute, we choose
the next shift based solely on the Ritz values, ignoring the shift based on §.

Table 1 shows some results for normal, conservative, aggressive, and fixed shifting.
For this table, we used a 1 x k, 1 * é rule for conservative shifting and a 3k, 3% ¢
rule for aggressive shifting.

We have described the general rule for choosing ;41 when ;41 is taken to the
right of ¢;. Of course, we obtain two similar views of the spectra to the left of oy,
which give another alternative for the next shift. In general we do not know in which
direction the next shift should be taken. Indeed, when finding eigenvalues nearest
to an interior point we first move in one direction from o; and then in the other
direction. At the completion of each Lanczos run in which we attempted to extend a
trust interval, we compute, and save, the next shift that would extend the new trust
interval further in the same direction. The first shift, unless it is at a finite endpoint
of the computational interval, is treated as extending the null trust interval both to
the left and to the right. The Ritz values are then discarded.

These two views of the inverted spectra, albeit simplistic, have proven to be effec-
tive. A model based on convergence rates of the eigenvalues [36] is far too pessimistic
to be of any use here.

3.3. Sentinels. There are several aspects of our eigenanalysis code where the
shift selection mechanism and the implementation of the Lanczos algorithm are closely
tied together. For example, we do not want to recompute at later shifts eigenpairs
that have been computed from earlier shifts. Any computation spent recomputing
known eigenpairs is wasted. Even allowing accidental recomputation creates a difficult
situation in which we must determine the correct multiplicity of a computed eigenvalue
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for which several eigenvectors have been computed. We choose never to allow this
situation to arise.

In theory there is a very simple fix. If the starting block for the Lanczos re-
currence is chosen to be M-orthogonal to all previously computed eigenvectors, the
recurrence should remain M-orthogonal to all previously computed eigenvectors. This
is not sufficient in practice, as rounding errors introduce components of the excluded
eigenvectors. We reorthogonalize the recurrence to specific eigenvectors only when
necessary using external selective orthogonalization (see §4.3.3). This mechanism dra-
matically reduces the cost of preventing the reappearance of excluded eigenvectors.

A second mechanism for reducing this cost is in the purview of the shifting code.
A common situation is depicted in Fig. 6. The new shift, o;41, has been chosen; the
nearest previous shift, o;, forms the end of a trust interval. (Fig. 6 depicts the initial
case where the trust interval including o; is trivial.) Between the two shifts lie a set of
eigenvalues and Ritz values computed during the run at ;. Because the convergence
rate for the eigenvalues in the Lanczos algorithm decreases as the distance from the
shift increases, the usual pattern is that the accepted eigenvalues are those closest to
o; and the Ritz values are those farther out with little or no interlacing of the two
sets.

L I‘HHH H ‘HHI‘ LILL LT
T 1 1 T
St aj Sr Tit1
Ritz Values Accepted Eigenvalues Ritz Values

Fia. 6. Sentinels.

Consider in each direction the eigenvalue farthest from o; such that between it
and ¢; no (unaccepted) Ritz values are found. There is such an eigenvalue to the
right of a shift and similarly to the left, each being the last eigenvalue before a Ritz
value is found. We call these two eigenvalues A} and A7. In normal circumstances we
assume that there are no eigenvalues missing between o; and A} or A}.

We define the right sentinel s, as the left endpoint of the interval of uncertainty for
Ar, based on the required accuracy tolerance. Thus the true value of A} lies to the right
of the sentinel s,.. A left sentinel is defined similarly. Assume that o;4; > o;. The
eigenvectors corresponding to A} and to any other eigenvalues found between s, and
0;4+1 are prevented from reappearing by use of external selective orthogonalization.
We allow the recurrence to recompute eigenvalues which lie to the left of s, , but these
are discarded immediately. This technique allows us to trust any eigenpairs that are
computed in the region in which we expect new eigenpairs to appear, without incurring
the cost of extensive reorthogonalization. The reorthogonalization with respect to
Ar’s eigenvector removes any doubt that could exist about the exact location of this
eigenvalue in the shifted and inverted spectrum for the new shift. At the same time,
the eigenvector(s) most likely to reappear are suppressed.

We generalize the notion of sentinels slightly to handle clusters of eigenvalues.
Should the sentinel s, lie to the left of A,._1, we move the sentinel back to the endpoint
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of the uncertainty interval for Ay_;. We continue this process until the sentinel lies
between the intervals of uncertainty for two eigenvalues, or until the shift itself is used
as the sentinel.

3.4. The initial shift. The most difficult task is usually the first: getting
started. The selection of the first shift must be made with no information about
the spectrum other than the specification of the desired eigenvalues. We use any
location information in the specification to make an initial choice for the first
shift, oy,

a if |a| < |b] if lowest modes or all modes wanted and
b if |a] > |b] min |al, [b] < oo,
_ a if |a| > |b] if highest modes wanted (a and b must
a1 = b if|a| < |b| [ both be finite),
¢ if modes nearest £ wanted,
0 otherwise.

This choice of o1 gives a reference point in the spectrum as to which eigenvalues are
important to the user. In cases where £ is not specified by the user, we define £ to
be o1 as defined above. We note that 0 is a natural choice when we have no location
information—in that common case we want the eigenvalues of least magnitude, i.e.,
closest to 0.

Unfortunately, a choice of o7 = 0 is fraught with difficulties. A shift at zero is
not allowed in the buckling transformation and yields a singular operator in vibration
analysis when K is semidefinite. If a shift at zero were taken in the latter case, it
is unlikely that the singularity of the operator would be detected. It is more likely
that only the zero eigenvalues would be computed and no other useful information
could be extracted from the run. (The near-singularity of the operator would cause
the Lanczos recurrence to break down after computing the invariant subspace of the
zero eigenvalues.) This would leave us little better off than we were when we began,
with no information as to where the nonzero eigenvalues are located. A better initial
shift would be a shift somewhere in the vicinity of the first few nonzero eigenvalues.
Such a shift would allow computing both the zero, rigid body modes and a number
of the nonzero modes as well.

The difficulty is in getting some idea of the scale of the first nonzero eigenval-
ues. We have adopted a heuristic strategy recommended by Louis Komazsik of The
MacNeal-Schwendler Corporation. This heuristic computes the geometric mean of
the centers of the Gershgorin circles while excluding the centers smaller than 107%.
This heuristic usually computes a reasonable problem scale x. Specifically,

1

X = | )
M|
Ly el
i

where the summation is taken over all terms with &;; # 0, llk—l < 10%; [ is the number
of entries included in the sum. Table 5 gives an idea of the reliability of this heuristic.
We use x to correct the initial selection of oy whenever |o1] < x. In either the

vibration problem or ordinary eigenvalue problem we adjust o1 as

X ifa<x<b,
oy = —X otherwise, if a < —y < b,
max (|al,]b]) otherwise.
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We adjust the initial shift in a similar fashion for the buckling problem. However,
we try oy = —x first and then o7 = x second, because the most common buckling
analysis in structural analysis is computation of the smallest negative eigenvalue.

TABLE 5
Comparison of problem scale x and lowest eigenvalues.

Matrix X Lowest Closest to
eigenvalue eigenvalue
BCSST 08 | 1.8 x 1072 | 6.9 x 10° 1
BCSST.09 | 1.3 x 107 2.9 x 107 1
BCSST_10 | 3.1 x 1072 | 7.9x 1072 1
BCSST_ 11 | 3.0 x 102 1.1 x 10! 12
BCSST 12 | 1.5 x 10° 3.5 x 10° 1
BCSST_ 13 | 1.2 x 102 1.5 x 10% 1
BCSST 19 | 6.6 x 10° 2.1 x 10° 3
BCSST 20 | 5.5 x 102 6.6 x 10° 7
LUND 2.1 x 10! 2.1 x 102 1
PLAT1919 | 2.1 x107% | 1.1 x 10713 315

3.5. Choosing a direction in which to expand a trust interval. The ma-
jority of vibration analyses result in a simple, monotonic expansion of the trust inter-
val from lowest to higher values. In these cases we know that there are no additional
eigenvalues of interest to the left of the trust interval; extending the interval to the
right is the only reasonable action. Cases in which we need to choose a direction
arise when a shift is taken in the interior of the spectrum by accident or by design.
For example, ¢ is a very reasonable initial shift when we want to find eigenvalues
nearest £. In general, finding the eigenvalues of smallest magnitude for an ordinary
eigenproblem or for buckling analysis is also such a case.

We use the reference value &, either as set in the problem description or from
the initial shift (see §3.4), to determine the direction in which to move the shift. If
multiple trust intervals exist, the trust interval including or closest to € is primary;
§3.7.1 describes how multiple trust intervals can exist and the logic for determining a
new shift in that case. In the most typical case we have only a single trust interval,
which we attempt to extend.

We distinguish two subcases, when the trust interval includes an endpoint of the
computational interval and when it does not. In the first case the trust interval can
only be extended in one direction without moving outside the computational interval,
so the choice of direction is trivial. When the trust interval includes neither endpoint,
we further distinguish between cases where € is or is not in the trust interval. If the
trust interval does not include &, we shift in the direction of &, because that is where
the eigenvalues of most importance to the user lie.

The only remaining case is of a single trust interval that contains &, but neither
endpoint of the computational interval. In this case we compute the interval [z, z,]
that includes the entire trust interval and all computed eigenvalues, even those outside
of the trust interval. We define » = min(¢ — z;, z, — &) to be the radius of a symmetric
umbrella about ¢ where we have some degree of confidence that we have computed all
the eigenvalues in the umbrella. Note that this confidence may not be confirmed by
inertia values. We try to enlarge this umbrella enough to include all of the eigenvalues
that the user has requested or until one end of the umbrella is an endpoint of the
computational interval. We move in whichever direction increases r. Ties are broken
by shifting to the left.
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3.6. Analysis in a finite interval. Frequently the user of the sparse eigensolver
will specify a computational interval with finite endpoints. The number of eigenval-
ues in the interval is usually valuable information to the user and the eigenanalysis
code, even when not all of these eigenvalues are actually computed. We obtain this
information at the beginning of the analysis by computing the factorization for each
endpoint. If these factorizations can be used in the eigenanalysis itself, the cost of
gaining this information would be nominal. (Note that both factorizations will be
required in any case when all eigenvalues in the interval are requested.) We save both
factorizations off-line and use them whenever it appears to be appropriate.

As discussed in the previous section, we often choose the initial shift to be one of
the endpoints. If so, one of the factorizations will be used immediately. We modify the
shift strategy slightly in order to take advantage of the second factorization. When
the natural choice of a shift would be near an otherwise unselected finite endpoint,
and when a shift at the finite endpoint would not cause a large number of extra
eigenvalues to be computed, we choose the endpoint as the shift. This may result
in some additional work during the Lanczos iteration, but it will save the cost of a
factorization. There are cases where we can extend a trust interval to a finite endpoint
without making a Lanczos run at the endpoint. These occur when the analysis at
another shift results in computation of all of the eigenvalues between the shift and
the endpoint.

3.7. Special cases. Robustness is one of our goals. It is naive to expect that
the heuristics described above will work for all problems. Here we describe a number
of special cases that can and do arise in practice and our approaches for handling
them smoothly.

3.7.1. Filling gaps. The shift selection is designed to extend the trust interval
obtained from previous Lanczos runs. Strange, asymmetric distributions of eigenval-
ues or very high multiplicities may create situations in which the shift o;41 to extend
the trust interval is taken too far from o; to allow computation of all the eigenvalues
in (0;,0;41) with a single run. The inertias from ¢; and o;4; will indicate that some
eigenvalues between the two shifts have not been computed.

Our goal is to maintain a trust interval, so we find the missing eigenvalues before
we attempt to extend our knowledge beyond ¢;41. We attempt to fill the gap between
the two active shifts o; and 0,41, before proceeding. We assume that the missing
eigenvalues lie between the right sentinel s; for the shift o; at the left and the left
sentinel s; 41 for the shift o;41 at the right, that is, in [s;, s;41]. If the sentinel values
overlap we use [0, 0;41] instead. In either case we have an interval [¢, d] in which we
want to chose a shift. We choose 0,42 as

Ved  if0 < 2¢ < d,

Oita = —Ved ife<2d<0,
%’—d otherwise.

The gap between two trust intervals is not always filled on the first attempt. The
shifting strategy will continue recursively, computing missing eigenvalues, until the
primary trust interval has grown large enough to contain the requested eigenvalues or
when all trust intervals have been merged into one.

3.7.2. Restart at the same shift. Economizing on the number of factoriza-
tions is also a goal. In two cases a single Lanczos run will not find all the desired
eigenvalues near a given shift. These occur when eigenvalues with multiplicity greater
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than the blocksize exist or when a shift has been taken very close to a eigenvalue. If we
suspect either case we make an additional Lanczos run at the same shift. During this
run we perform external selective reorthogonalization against all newly computed
eigenvectors and any other eigenvectors in the interval between this shift and any
neighboring shifts. We discard any use of sentinels because the assumption behind
them has probably broken down.

3.7.3. Hole in the spectrum. A particularly difficult spectrum for our selec-
tion of shifts is one with a very large disparity in the magnitudes of the desired
eigenvalues. In such cases our notion of a reasonable distance may be faulty and yet
we may have no Ritz value information to help us choose a new shift.

Our code treats as special a situation in which no new information is obtained at
consecutive shifts. That is, we compute no meaningful Ritz values and the inertias
at the two shifts o; and ;41 are identical. We suspect that there is a “hole” in
the spectrum, that the remaining eigenvalues are farther away than our notion of a
reasonable distance. We expand the notion of a reasonable distance in an attempt to
cross the hole. If the computational interval [a, b] has a finite endpoint that has not
been used previously as a shift (see §3.6), the shift strategy will select the new shift
at that endpoint. Otherwise, assuming that we are expanding a trust interval to the
right, we take the new shift 0,412 = ;41 + 108 (see §3.2 for a description of é). If
this Lanczos run still provides no new information, we take o3 = 0,42+ 1006. If we
still obtain no new information, we make a final attempt to cross the gap with a shift
Oit4 = i3 + 10006. If this run still provides no new information, we terminate on
the assumption that the remaining eigenvalues are infinite. We return the eigenvalues
already computed, together with an appropriate warning.

3.7.4. Treatment of § in no-Ritz value cases. The setting of the “reasonable
distance” value, 8, must be made carefully in cases in which the Lanczos algorithm
terminates abnormally. This value is not updated if no new information is available
for the next shift.

3.7.5. Overly aggressive shifts. Unusual distributions of eigenvalues or un-
usual convergence patterns may cause situations in which a shift is selected much
farther out than required for the desired eigenvalues. We determine that the shift is
too far from the current trust interval if a run at this shift will have to compute more
than 30 eigenvalues before computing eigenvalues of interest to us. (The number 30 is
a heuristic estimate of the number of eigenvalues we can profitably find with a single
run.) In such a case we record the current shift, to keep another shift from going out
too far in that direction, and select a new shift. We choose the new shift by linear
interpolation between the end of the trust interval, o;, and the shift we reject, o,.
The new shift is:

: (
(K — o, M) — v(K — o MY "

oc=o0;+ —0y).

3.8. Modifications for buckling problems. The spectral transformation used
in the buckling problem for the Lanczos iteration is ill posed for shifts at or near zero.
The shift strategy for the buckling problem is similar to the vibration strategy except
that shifts at zero are not allowed. A shift at zero is replaced by one half the minimum
of the problem scale y, the absolute value of the shift nearest to zero, and the absolute
value of the computed eigenvalue nearest to zero.
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4. Implementation of the block Lanczos algorithm. The underpinning of
our eigenanalysis code is the block Lanczos algorithm, as specialized for the spectral
transformations (§§2.3 and 2.5). The use of the block Lanczos algorithm in the con-
text of the spectral transformation and within applications code necessitates careful
attention to a series of details: the implications of M-orthogonality of blocks; block
generalizations of single vector orthogonalization schemes; effect of the spectral trans-
formation on orthogonality loss; and interactions between the Lanczos algorithm and
the shifting strategy. The success of the algorithm hinges on all of these issues.

4.1. The M-orthogonal QR factorization. Each step of the block Lanczos
recurrence generates an n x p matrix R, whose column vectors are to be orthogonalized
with respect to an inner product defined by a positive definite matrix, which we will
call M.

Given R, we must compute its orthogonal decomposition @B such that

« R=QB,

e QTMQ =1,

e (Qisn X p,

e B is p x p and upper triangular.
When M is not the identity, the number of good choices for computing an orthogonal
factorization appear to be limited. In addition, we want to avoid repeated matrix-
vector multiplications with A, because we expect M, though sparse, not to be stored
in main memory; each multiplication by M may require accessing secondary storage.
We have developed a generalization of the modified Gram—Schmidt process that re-
quires only matrix-block products, never matrix-vector products. We save a set of p
auxiliary vectors that represent the product M @ throughout the process. This matrix
is initialized to M R when the matrix that will hold @ is initialized to R; thereafter,
updates made to vectors in () are shadowed by identical updates in M Q. As a result,
M 1is used explicitly only in the initialization.

This way of enforcing M-orthogonality certainly suggests questions of numerical
stability. Following [10], we repeat the orthogonalization process up to 2p times,
another repetition being required whenever the norm of any of the ¢; vectors is less
than 7 times its norm at the beginning of the iteration. When another repetition
is required we recompute the matrix M@ by an explicit multiplication by M. The
choice of n = \/2/2 from [10] guarantees that the final set of vectors is orthonormal.

In our algorithm for computing the M-orthogonal factorization (Fig. 7), the vec-
tors w; are the auxiliary vectors that represent the vectors M¢;. The matrix B is
the triangular matrix computed in one iteration of the algorithm; the M-orthogonal
triangular factor B is the product of all of the individual triangular matrices B.

It should be noted that this algorithm may encounter a rank deficient set of
vectors ¢; and identically zero vectors are possible. Further details can be found in
our discussion on when to terminate a Lanczos run (§4.4).

We have assumed in the discussion above that M is positive definite. In the
case of M positive semidefinite, the recurrence, when properly started, generates a
sequence of blocks, all of whose columns lie in the range of (K — o M)~'M. This is
the subspace from which the eigenvectors corresponding to finite eigenvalues must be
drawn [13]. Clearly, the orthogonalization algorithm preserves this subspace. Fur-
ther, this subspace has only the trivial intersection with the nullspace of M [13],
[29]. Thus, the appearance of a nontrivial column with zero M-norm represents a

breakdown equivalent to rank deficiency, since such a vector cannot lie in the range
of (K —oM)™1M.
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Initialization:

Q=R
B=1

Factorization:

Repeat
W = MQ

Fori=1,2,...p do
bt = /i
2 = qi/bii
w; = w;i/bi;
Forj=1:¢+1,...pdo
Bij = qiij
9 =qj = bijai
w; = w; — I;ijwi
End
End

B=BB

Until convergence or iteration limit exceeded

Fic. 7. M-orthogonal modified Gram—-Schmidt orthogonalization.

4.2. Analysis of the block tridiagonal matrix 7j. The original eigenvalue
problem is reduced by the block Lanczos algorithm to an eigenvalue problem of the
form Tjs = s, where Tj is a block tridiagonal matrix. In §2.2 we noted the standard
result by which bounds on the accuracy of the computed eigenvalues can be com-
puted without explicit computation of the eigenvectors. These bounds are used to
determine whether to terminate the Lanczos recurrence and to evaluate which eigen-
pairs are accurate enough to be considered to have converged. The results in §2.2
generalize to provide a bound on the accuracy of the approximate eigenvalues of the
spectrally transformed problem. However, our real interest is in the accuracy of our
approximations to the original, untransformed problem. We need to determine which
eigenpairs of the original problem have converged, and we need accuracy estimates
for all of the Ritz values for use in the shift selection process. To get these estimates
we need to unravel the effects of the spectral transformation. Throughout we must
account for possibly multiple eigenvalues.

Recall that the following relation (14) holds for vibration analysis:

(K —oM) "My -y = Qj41Bj11E] .
Therefore, because ;41 is M-orthogonal,
V(K = oMY M = Mybllas—s = [MQy 1By 41 7 sllnr—
= |Bj+1E] 52 = ;.
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For each eigenvector s the corresponding f; is the Euclidean norm of the product
of the upper triangular matrix B;;; with the last p components of s. We apply a
theorem on the error in eigenvalue approximations for the generalized eigenproblem
from [32, p. 318] to obtain:

1

— 0

M(K — o M)~ My — Myf|py -
_6‘<|l (K —oM)"'My — Myf||x _ 5

- 1M yllar-

Thus, as in the ordinary eigenproblem, 3; is a bound on how well the eigenvalue of 7}
approximates an eigenvalue of the operator to which the Lanczos algorithm is applied.
We extend this to find a bound on the error |A —v|.

Ericsson and Ruhe [14] show that

(18) 3

(19) A—v| <2

This shows how the accuracy requirements are modified by the spectral transforma-
tion. When X is close to the shift ¢ we need only a moderately small 3; to guarantee
a good approximate eigenvalue v because 6 is large. Conversely, eigenvalues far from
the shift are transformed to small values of #, requiring smaller values of §; than
would otherwise be expected.

The bound (19) can be improved for well separated eigenvalues. Define the gap
v as:

1 1

M—0 A—0

= min
7 NiZA

bl

The gap bound theorem from [32, p. 222] then results in

b7
(20) A —v| < s

Both bounds (19) and (20) are valid. In general, the first is smaller than the second for
clustered eigenvalues and larger for well separated eigenvalues. In our implementation
we use whichever bound is smaller:

2
(21) |A—V|§min{%,£—{y}.

The definition of 4 should be modified to account for clusters of eigenvalues; the gap
between sets of multiple eigenvalues is used. In practice we have only an approxima-
tion to v, which we derive from the shifted and inverted eigenvalues of T;.

Similar error bounds can be derived for buckling analysis. Let (v,y) be a com-
puted eigenpair of (K, K5). Then 6 = —*- and |ﬁ — 0] < ;. From the fact that

v
v= %, it follows that
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The Lanczos algorithm approximates 6 by a projection onto a subspace. When the
inversion of the operator is taken into account, the computed eigenvalues of the trans-
formed problem are always closer to one than the true eigenvalues of the transformed
problem. Therefore,

1 1

= < .
|,\ia_1| N |9_1|

The resulting simple error bound for buckling analyses is

o

A —v|< ﬁﬁr

The analogous refined gap error bound is
ol 32

A —v| < (;Jiﬁlj)z%,
where 73 is defined by

. A A

"= N e A —a|

As in the vibration case, the lesser of the two bounds

o]

(22) |)\—1/|Smin{(g_l)Zﬁj,(;ojﬁlj){yb}

is chosen, with the definition of 7; modified in the presence of multiple eigenvalues.

The spectral transformation preserves the eigenvectors, so there is no need to
account for the transformation wis @ vis the approximate eigenvectors. However, Er-
icsson and Ruhe [14] introduced a correction term that results in improved eigenvector
approximations for the untransformed problem. This was later discovered to have the
additional benefit [29] of ensuring that the computed eigenvectors lie in the proper
subspace in cases where the metric matrix is semidefinite.

Let v = o + % be the computed eigenvalue. The correction step is formally one
step of inverse iteration with the computed eigenvector y; z is computed to satisfy
(K —oM)z = My. By (14)

F=(K—oM)""My=y0+ Qj41Bj11E] s.

The vector

z= %5 =y+ éQj-}—lBj-l-lE]TS
can be obtained cheaply by adding a linear combination of the vectors in the next block
of Lanczos vectors to y. This gives a better approximation to the eigenvector of the
vibration problem and ensures that the approximate eigenvectors are uncontaminated
by the effects of a semidefinite M. The corresponding correction for a semidefinite K
in buckling analysis is given by

1
z=y+ mQjHBjHEf&
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During the course of the Lanczos algorithm we need an estimate of the residual
bounds. The bounds in (21) or (22) require most of the eigenvalues and the corre-
sponding entries in the bottom block row of the matrix of eigenvectors. Parlett and
Nour-Omid [33] have a very efficient algorithm for the single vector Lanczos algo-
rithm. Block generalizations have yet to be found, so we use a more straightforward
approach. The eigenvalue problem for 7; is solved by reducing the band matrix 7; to
tridiagonal form and then by applying the tridiagonal QL algorithm. We use subrou-
tines from EISPACK [16], [41], with slight modifications, to obtain only the bottom
p entries of the eigenvectors of T;. These modifications reduce considerably both
computation and storage requirements for each Lanczos step. Only p?j words are
needed as opposed to (pj)? for the full eigenvector matrix. We use the corresponding
unmodified routines to obtain the full eigenvectors at the conclusion of a Lanczos run,
at which time temporary space used during the recurrence is available to store the
entirety of the eigenvector matrix for 7'

4.3. Global loss of orthogonality and reorthogonalization. Up to this
point our discussion of the block Lanczos algorithm has assumed exact arithmetic,
but the various error bounds hold in finite precision as well. It is well known that
there is a global loss of orthogonality among the computed Lanczos vectors in in-
exact arithmetic. A reasonable correction is to perform limited reorthogonalization
to keep Q; sufficiently close to orthogonal. Our approach is twofold—we identify
mechanisms whereby orthogonality is lost and then apply a model of the loss of or-
thogonality to determine when to correct the situation. In the context of the block
shifted Lanczos recurrence, orthogonality is lost in three different ways. First, there
is a loss of orthogonality between adjacent blocks in Q;, the blocks the recurrence
should make orthogonal. This is corrected by use of local reorthogonalization. Second,
the recurrence suffers a global loss of orthogonality with respect to the blocks of Q;
not explicitly involved in the reorthogonalization. We correct for this with a block
version of partial reorthogonalization. Lastly, it is important that a Lanczos run at
some shift not recompute eigenvectors computed as a result of a previous Lanczos run.
We present a new reorthogonalization scheme, ezternal selective reorthogonalization,
to ensure that this does not occur. Throughout the process our goal is to apply a
minimal amount of extra work, particularly as it requires accessing the entirety of Q;,
to maintain at least (’)(\/a—orthogonality in Q;.

The fundamental approach is to model the Lanczos recurrence in finite precision.
The following recurrence is our model of what really happens:

(23) Qi+1Bjy1 = (K —oM)'MQ; — QjA; — Q;—1B] + Fj,
where Fj represents the roundoff error introduced at step j. Then,

QIMQ;41Bj41 = QL M(K — o M)™'MQ; — QL MQ; A;
—Qi MQ; 1Bl + Qf MF;.

For convenience we define W; 1 = QT MQ@; , with which the previous equation becomes
(24) Wig1xBjy1 = Qf M(K — o M) 'MQ; — W, Aj — W1 £ B} + Qf MFj.

This equation is nearly sufficient for our computational purposes. We can easily
find norms for the blocks A; and B; during the recurrence, and we will compute
bounds for all the other terms except for the first term on the right side of (24).
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We eliminate QT M(K — o M)~'M@; from (24) by obtaining an expression for its
transpose by premultiplying the occurrence of (23) with j = k by Q]TM

Qf M(K — o M)™'MQy = Wj k41Bry1 + Wi jAj + Wi_1 ;B + Q] M Fy.
The obvious substitution then results in
Wit1xBjt1 = B;?_,_le,kH + AW + BeWj 51
(25) —WjkAj — Wi—16B] + Gjx.
Here G; = Q{JWF]' — F,CTMQ] represents the local roundoff error. Formula (25)
explains the global loss of orthogonality. We will use this model to estimate and

bound the loss of orthogonality among the Lanczos vectors and thereby determine
how to correct the loss of orthogonality.

4.3.1. Monitoring the loss of orthogonality. The development of our mod-
eling procedure has two parts, both based on the bounds available by taking norms

of (25):

I1Wjs1,kll2 < 1B (1B 12l W k1|2
HIBell2llWj k-1ll2 + [ Bjl|2[|Wj-1,8ll2
+([1 4512 + (| A2V & ll2 + |G x]]2)-

We use this equation to compute a bound wj ; on ||Wj ||2 at each step.

The first part of our development addresses the bounds wjy1 3 for k < j — 1,
that is, for blocks that are not explicitly involved in the orthogonalization of the
Lanczos vectors within the recurrence itself. For these blocks the loss of orthogonal-
ization depends on the loss already incurred at previous steps. Bounds on that loss
of orthogonality will be available to us from previous steps of the simulation given in

Fig. 8.

Initialize:

€s = ep\/n, where ¢ = roundoff unit, p is the blocksize
and n = number of degrees of freedom
w21 = €

Loop:

For 7 =2,3,4,...do
Witl,j T 6
wit1,j-1 = PBj+1(205€s + (aj + aj_1)es + Bj—1wjj-2)
Fork=1,...7—2do
wit1,k = Bj+1(Be1wj k1 + Bewjp—1 + Fiwj—1.6 + (aj + ap)wj k)
End
End

Fia. 8. Simulation of loss of orthogonality (w-recurrence).

The following quantities from the Lanczos recurrence are required for the simu-
lation:

ay = || Ag|2,
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Br = || B2,
Br = 1/0p(By), where o,(By) is the smallest singular value of By.

In addition, we follow [32], [37], [39] in making a standard assumption on a bound
for the error term: ||Gjkll2 < €5 = epy/n. We have left unstated the origin of the
two initializing terms, w;y1; and wj4qj-1. In examining them we will uncover a
particular artifact of the block Lanczos algorithm. By (25),

Witrj-1Bjr1 = Bf Wjj + AjoiWjj—1 + Bj-aWj s
~Wjj-14j = Wi-1j-1B] +Gj -1
= (B Wjj = Wj_1j-1B])
+(Aj-1Wj -1 — Wjj-14;)
+Bj1Wjj—2+Gjj-1.

By reason of the care with which we compute the QR factorization, we assume that
Q]TMQ] = I+ F, where [ is the identity matrix and ||F||2 < €. For reasons discussed
below, we can assume that ||W; ;_1||2 < €,. From this it follows that

(26) IWis1j-1ll2 < Bir1(2Bi6s + (f + aj_1)es + B -1wj j—2).

Notice from (26) that wjyi ;-1 > Bj+1ﬁj€s~ At the next step this term will ap-
pear as Bj+25jw‘7’+17j_1; in the following step it will be one of the contributions to
Bj+3ﬁj+1wj+27j. Both Bj+1 and Fj41 appear in this last product. The growth of the
bound occurs as fast as «(B;) = Bj+1ﬁj+la the condition number of B;. The anal-
ysis of the ordinary Lanczos algorithm has unity corresponding to the term x(B;),
because the condition number of a nonzero 1 x 1 matrix is always one. The loss of
orthogonality occurs more rapidly in the block Lanczos algorithm, particularly when
k(Bj) is significantly larger than one, but also in general.

A different, but related, analysis can be used to show that the term x(B;) appears
in the bound for wj4q ;. This was first observed in [23], where this growth was also
actually observed in the Lanczos recurrence. An inexpensive correction is needed to
make the recurrence useful: at each step a local reorthogonalization between ;41
and @; is performed. Because the Lanczos recurrence is itself just a special form of
Gram—-Schmidt orthogonalization, local reorthogonalization can be seen as a simple
generalization of the reorthogonalization required in computing the M-orthogonal fac-
torization of a single block. Local reorthogonalization ensures that es;-orthogonality
holds between successive blocks of Lanczos vectors. Note that a local orthogonaliza-
tion step is also performed on completion of a partial reorthogonalization. If storage
is not an issue, a local reorthogonalization between ();4; and Q;_; should also be
performed, in which the obvious modification should be made to the algorithm for
computing the w-recurrence.

4.3.2. Partial reorthogonalization. The global loss of orthogonality modeled
by the w-recurrence can be corrected by two different schemes. These are the selective
orthogonalization scheme of Parlett and Scott [35] and the partial reorthogonalization
scheme of Simon [40]. Selective orthogonalization takes advantage of the fact that
orthogonality is lost exactly in the direction of eigenvectors that have become well
represented in Q;. Selective orthogonalization is implemented in two steps. In the
first, the Lanczos recurrence is “interrupted” when an eigenvector converges. The
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eigenvector is computed, which requires access to all previous blocks in Q;. The
second step occurs whenever the model indicates orthogonality is lost again in the
direction of the eigenvector. The second step requires that the latest two Lanczos
blocks be reorthogonalized against the computed eigenvector, but does not require
access to preceding blocks of Q;.

Partial reorthogonalization interrupts the recurrence to reorthogonalize @); and
QQj+1 against all preceding blocks whenever the simulation indicates too great a loss
of orthogonality. Each reorthogonalization step requires access to all of Q;. For this
reason partial reorthogonalization has previously been recommended for situations in
which the eigenvectors were not of any interest (as in solving sparse linear equations
[40]). The extra cost in an application of partial reorthogonalization does have an
extra payoff; orthogonality is restored against all converged and nearly converged
eigenvectors simultaneously.

TABLE 6
Comparison of partial and selective reorthogonalization.

Matrix Eigen- | Block Partial Selective
values | steps | reorthog. orthog.
steps steps
BCSST_ 267 211 181 51 98
PLAT1919° 636 579 143 291

2 blocksize 3, lowest 200 modes.
b blocksize 3, all modes in [.000025, .24].

Shifting and the block recurrence each accelerate the convergence of eigenpairs;
together they cause eigenpairs to converge very rapidly. Frequently one or more
eigenpairs converge at each block step, once the recurrence is established. In this cir-
cumstance selective orthogonalization has possibly greater requirements for accessing
Q; than does partial reorthogonalization. Selective orthogonalization will require an
eigenvector computation at almost each step; partial reorthogonalization will occur
only every three to four steps in typical problems. It would be possible to combine
the two schemes—to carry out partial reorthogonalization during the computation of
an eigenvector for selective orthogonalization, but it is not clear that the combination
would be more effective than partial reorthogonalization alone. (See [34] for a dis-
cussion of these issues for the ordinary Lanczos recurrence.) Table 6 summarizes the
reorthogonalization requirements of two extensive eigencomputations. The number
of selective orthogonalization steps given in this table is the number of block steps
at which one or more eigenvalues converge; the number of partial reorthogonalization
steps is the number of block steps at which partial reorthogonalization was performed.

Our implementation of the Lanczos recurrence uses the block generalization of
partial reorthogonalization, based on the block w-recurrence presented above. The
single vector version of this simulation has been shown previously [40] to provide a
good order of magnitude estimate of growth of the loss of orthogonality, as well as a
bound. We use the block version to estimate the loss of orthogonality to determine
when reorthogonalization is necessary. Previous work [32], [35], [39] indicates that
reorthogonalization is needed whenever

MaxX W41,k 2 Ve

The reorthogonalization should be carried out with both of the last two block of
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vectors (; and j41, in order that the next block generated by the recurrence, @; 42,
be strictly orthogonal to all of its predecessors. This leads to the following partial
reorthogonalization [40] algorithm (Fig. 9) for maintaining orthogonality:

At each Lanczos step, after computing Q41 and B;1, do:
Update the w-recurrence as above

Wmax = MaXg Wj41 k
If wmax > /€ then
Fork=1,...,7—1do
Orthogonalize @); against Q)
Orthogonalize ()1 against Qg
End
Orthogonalize ()41 against @;
Reinitialize w-recurrence:
Witk = Wik = Es,k = 1,...,j
End if

Fic. 9. Partial reorthogonalization.

Note that the orthogonalization of ); and ;41 involves M-inner products. This
requires the storage of both the Lanczos vectors and their product with M in sec-
ondary storage, or, alternatively, reapplying M to the Lanczos vectors. The appro-
priate form depends on cost.

4.3.3. External selective orthogonalization. A different type of loss of or-
thogonality occurs in the context of the shifted and inverted Lanczos algorithm. It is
possible that, after computing some eigenvalues with shift o1, the same eigenvalues
and vectors are computed again with shift 5. External selective orthogonalization
is an efficient way of keeping the current sequence of Lanczos vectors orthogonal to
previously computed eigenvectors, and thereby avoiding the recomputation of eigen-
values that are already known. External selective orthogonalization is motivated by
the classical selective orthogonalization algorithm [35], but the development here is
entirely new.

In theory it would be sufficient to orthogonalize the starting block against known
eigenvectors, because all subsequent Lanczos vectors would be orthogonal as well. Of
course, this does not hold in practice. A global loss of orthogonality occurs, similar to
the one among the Lanczos vectors themselves; in addition, the computed eigenvector
is not exact. The contribution of both sources of error to the recomputation of
eigenvalues and vectors is analyzed below.

Let (v, y) be an approximate eigenpair of (K, M). For clarity, denote the current
shift as ohew. The relationship between the eigenvector y and the Lanczos vectors
obtained with the shift oy is found by premultiplying the finite precision recurrence
(23) by y'' M to obtain

Y MQj11Bjp1 =y M(K — 0new M) 'MQ; — y" MQ; A;

(27)
—y"MQ; 1B +y" MF;.

We assume that B;1 is nonsingular. Then we can obtain a bound on the loss of
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orthogonality between y and @); by taking norms of both sides of (27):

ly" MQj1alla < IBj i ll2(ly” M(K = onew M) MQ; — y" MQj Ajl2
+ 1y MQj-1ll2l|Bf ll2 + [ly" M Fj|2).

As with partial reorthogonalization, we can define a recurrence relation for a quantity
7; to bound the loss of orthogonality between y and the Lanczos vectors. Assuming
that 7 > ||[y? M Q|2 for i = 1,..., j, we obtain

1B 1ll2(ly" M(K — onewM) ™' MQj — y" MQj Ajll2 + 71| B] [|2 + [ly" M Fj2)

as a bound for the right-hand side of the j+ 1st step. Of the three terms on the right-
hand side of this equation, the second is easily computed and we have a standard
assumption for a bound on the third: [|Fj||2 < ep\/n. We need then only to bound
the first term [|y” M (K — onew M) 'MQ; — y" MQ; Aj||2. The spectral transforma-
tions preserve eigenvectors, so y is also an approximate eigenvector of the spectrally
transformed problem. Define the transformed residual vector zpew by

. _ 1
([X/ - Unewlw) lMy — T Y = Znew-
V — Onew

Then

1
Y M(K = 0pen M) 'MQ; = ———y" MQ; + 25, MQ;,
v

— Onew

from which it follows that

Tt 2pew M Qj ||2-

— Onew 2

1
Iy M (K =0new M) ' MQ;—y" MQ; 4|2 < H (Vil — Aj>

But

220w M Q12 = | (zew M) (MM2Q)2

< lznew MM 2Q; 12 = llznew Qs l1ar = llznelar-

Thus, the following simple recurrence for 7 gives a bound for the loss of orthogonality

observed in (27):
1
T _ A,
(V — Onew ]>

The same analysis applies to the buckling spectral transformation, where the
eigenvector orthogonality error (27) becomes:

(28)

i1 = B s (

+ Tj—lHBjTHQ + ||Znew||M + €P\/7_l) .
2

Yy KQj11Bj11 = vy K(K — 0newKs) "' KQ; — y' KQj A;
-y KQ;_1B] +y" KF;.
The transformed residual vector zpew 1s
v

(K — 0newKs) 'Ky — ————y = Znew.
— Onew
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By the same analysis as above, the recurrence for 7 in the buckling context is

14
- T —A.
(V_Unew ]>

The recurrences in (28) and (29) provide a mechanism for estimating the loss
of orthogonality to externally computed eigenvectors, regardless of the source. Each
requires computing the transformed residual vector, zhew, and its norm, but the recur-
rence applies to situations where eigenvectors are known adventitiously. For example,
in the vibration analysis of structures where K is singular, the so-called rigid body
modes, the zero eigenvalues and vectors, often can be computed at much less cost
than a factorization. Typically, the cost of computing the residual norms for all of
the vectors involved in external selective orthogonalization is less than the cost of one
additional step of the Lanczos recurrence.

In the context of a Lanczos code within a larger shifting strategy, it would be
attractive to use the information from the Lanczos recurrence to bound the errors in
the computed eigenvectors and thereby avoid having to compute ||znew||ar. In [20] we
provide an analysis for the case where the approximate eigenpair (v, y) was computed
by the Lanczos code at a previous shift o4q. However, we use the more general form
exclusively in our code.

As with partial reorthogonalization, we define a recurrence relation for a quantity
7; that estimates the loss of orthogonality of the Lanczos vectors with respect to y.
In the recurrence, 7; is defined be:

(29)

rie1 = 1B L (

+ Tj—lHBJTHZ + ||Znew||K + EP\/E> .
2

(30) Ti41 = Bir1(0nojTi + Bii—1 + | znewllnr),

which we initialize with 79 = 0 and 71 = ep\/n. The terms 3; and Bj+1 are defined as
in the w-recurrence. The term a,,; = [|(v — )71 — Aj|2.

An external selective orthogonalization is performed whenever 741 > /e. A
relatively large residual for the computed eigenvector will cause frequent reorthog-
onalization, but, as noted below, usually only a very small number of vectors are
actually involved. External selective orthogonalization is implemented as in Fig. 10.

Before the Lanczos iteration:
Determine the set of SO-vectors (eigenvectors for selective orthogonalization)
Orthogonalize ()1 against the SO-vectors.
Orthogonalize ()2 against the SO-vectors.

At each Lanczos step j = 3,4, ... do:
Update the 7-recurrence according to (30) for each SO-vector;
If (7; has been greater than /¢ or 7511 > /€ ) then
Orthogonalize ;1 against y
Set 7541 = €
End if

FiG. 10. Ezternal selective orthogonalization.

It is unnecessary to perform external selective orthogonalization against all pre-
viously computed eigenvectors. From (28) and (29) it is evident that one of the main
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driving forces in the loss of orthogonality is (v — ¢)™1. It would appear that loss
of orthogonality should mostly occur in the direction of eigenvectors corresponding
to eigenvalues close to the new shift. Furthermore, as discussed in §3.3, only a few
eigenvectors, again usually those close to the new shift, need be considered in order
to avoid confusing new eigenvectors with the old. In our implementation, we use sen-
tinels to reduce the cost of maintaining orthogonality. The set of eigenvectors used
for external selective orthogonalization is usually the eigenvectors corresponding to
any known eigenvalues closer to the shift than the sentinels. Eigenvalues beyond the
sentinels are discarded in the analysis of the block tridiagonal system.

The effect of using sentinels on the work required for external selective orthogonal-
ization is more dramatic than is suggested by the analysis above. Although proximity
to the shift is the driving force in the growth of 7, neither recurrence (28) nor (29)
begins at €. The term ||znew||asr is usually near \/e. The eigenvalues themselves are
only good to the convergence tolerance (usually €2/3 in our code). Furthermore, the
spectral transformations preserve eigenvectors, but do not preserve the property of
being the best minimizers for approximate eigenvalues (see [14] for a discussion of
the need to modify the approximate eigenvectors). As a result, external selective or-
thogonalization happens more often than we might expect, often at every step for the
eigenpairs nearest the sentinels, which frequently are simultaneously least accurate
and nearest the new shift.

Experimental results are shown for two examples in Table 7. The results shown
as “with sentinels” refers to the selection described in §3.3; the results shown as
“without sentinels” uses as SO-vectors all eigenvectors in the intervals between the
current shift and any neighboring trust intervals. The figure given as “cpu cost”
includes both cpu time and i/o processor time. The difference between the costs for
the two variations gives only a rough idea of the added cost for complete selective
orthogonalization because the difference in cost affects the termination decision for
each run and thereby changes the choice of shifts.

TABLE 7
FEzxternal selective orthogonalization.

With sentinels Without sentinels
Average Total Average Total
Matrix number of number of cpu number of number of cpu
S.0. Vectors | S.O. Steps cost S.0. Vectors | S.O. Steps cost
BCSST_26¢ 2.1 313 174.2 15.7 2265 222.7
PLAT1919° 6.4 2776 668.2 28.1 8692 801.5

2 blocksize 3, lowest 200 modes.
b blocksize 3, all modes in [.000025, .24].

The orthogonalizations involve again both y and My. In order to avoid the
repeated computation of My, all selective orthogonalization vectors are premultiplied
by M and the result is stored on the same random access file as the eigenvectors y.
This computation is performed before the actual Lanczos run begins.

4.3.4. Summary of reorthogonalization schemes. We now present in sum-
mary form the reorthogonalized block Lanczos algorithm we use in our production
code. Our scheme consists of applying, in turn, external selective, partial, and local
reorthogonalization to the result of a single block Lanczos step. The first two schemes
are applied only when the respective model signals a need; each should be applied
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before orthogonality is lost badly enough that repeated orthogonalizations are needed.
The local reorthogonalization is applied at each step. It may be applied repeatedly,
but this normally occurs only when the recurrence has broken down, which will cause
termination. The integration of these is indicated in Fig. 11.

Initialization:
Set Qo =0
Set Bl =0

Choose R; and orthonormalize the columns of R; to obtain @

with QT (MQ1) = 1,.
Lanczos Loop:
For j =1,2,3...do

Set U]' I([(—O’M)_l(JWQj)—Qj_lBJT
Set A]' IUJT(MQ])
Set Rj+1 = Uj - QJ'AJ'
Compute Q;41 and (MQj41) such that
a) Qi1 Bjt1 = Rjp
b) Q]'T+1(MQJ'+1): Ip

Evaluate y-recurrence for each SO vector and perform selective
orthogonalization if necessary

Evaluate w-recurrence and perform partial reorthogonalization
if necessary

Repeat up to 2p times:

Reorthogonalize ()41 to Q;

Recompute M-orthogonal factor of Q41
Until orthogonal factorization occurs in one step

End loop

Fia. 11. Spectral transformation block Lanczos algorithm preserving semi-orthogonality.

4.4. Cost analysis and termination of a Lanczos run. The block Lanczos
algorithm exists as part of a larger code, in which each Lanczos run solves only a
subproblem. In this environment there are three ways in which a given Lanczos run
can terminate:

1. All eigenvalues required for this subproblem have converged.

2. The Bj4i-block is ill conditioned or singular. In this case a continuation of
the Lanczos run is either numerically difficult or impossible. Singular or ill
conditioned Bj41-blocks can be encountered for the following reasons:

e The shift is very close to an eigenvalue.
e The effective space of Lanczos vectors is exhausted—we cannot compute
more orthogonal vectors than the problem has finite eigenvalues.
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e Dependencies within the starting block cause a singular B;4; at some
later stage.
3. Eigenvalues farther from the shift appear to be converging slowly. The esti-
mated cost for computing them in the current Lanczos run is great enough
that a new shift should be chosen.

The first of these is easy to detect in most cases. There is a minor complication when
we want the eigenvalues closest to some specified value because we do not know in
advance how many eigenvalues are required on each side of £&. At a given shift our
conservative code looks for as many eigenvalues as are required to complete the total,
even if these may represent more than what is needed on one side of £. As a result,
we may not terminate as early as we might with hindsight.

Breakdown in the recurrence is perhaps more likely than might otherwise be
expected. The first of the causes we try to avoid during the shift selection process; the
second occurs primarily during user evaluation of the code, when it is not uncommon
to be faced with problems like finding all of the eigenvalues of 7 x 7 matrices using a
blocksize of 5. The third we have never seen. Breakdown is detected by one of two
mechanisms—the norm of the residual block is very small compared to the norm of the
diagonal block or the off-diagonal block is ill conditioned and presumed rank-deficient.
We use a relative norm of 1/,/€ for the first case. For the second we compute, at each
step, the extreme singular values of the off-diagonal block B;; we terminate if the
condition number of B; > % We really want only the condition number of B;, but
the cost of a singular value decomposition of a p X p matrix is trivial compared to the
cost of an n x n sparse block solve.

The most common reason for termination is that computing more eigenvalues in
the current run is inefficient. Normally, eigenvalues far from the shift converge slowly
and require a large number of steps. Usually the fastest convergence occurs early,
with the number of eigenvalues converging per step tapering off as the length of the
run increases. Initially the cost per eigenvalue decreases rapidly, as the cost of the
factorization is amortized over several eigenvalues. Later, as the convergence rate
slows and the other costs increase, the average cost also increases. Our goal is to stop
at the minimum average cost.

The cost of a Lanczos run depends on a number of parameters, each a function
of the number of steps taken. The factorization typically represents the largest single
cost, but it occurs once. There is a large constant cost per step, comprising the
matrix-block solve and multiplication and other operations in the recurrence. The
cost of the eigenanalysis of 7} increases quadratically in the number of block steps.
Inasmuch as the eigenvalue nearest the shift is usually the first to converge, and
dominates the reappearance of banished subspaces, the frequency with which partial
reorthogonalization is needed is generally independent of the number of eigenvalues
that have converged and so represents another quadratic term. Terminating the run
by computing the converged eigenvectors from the Lanczos vectors is a cubic term.

We determine when to terminate a given Lanczos run by modeling the cost of
continuing the recurrence beyond the current step. The residual bounds estimating
the accuracy of yet unconverged eigenvalues are monitored step by step; the observed
changes are used to estimate future convergence. We attempt to locate a point in an
individual run where the average cost per eigenvalue is minimized. This is itself a
heuristic attempt to minimize the average cost for all eigenvalues. The effectiveness
of the heuristic is demonstrated for a particular example in Table 8.
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TABLE 8
Comparison of variations on termination model.

Standard Strategy Termination Early Termination Late
Matrix Shifts | Block cpu Shifts | Block cpu Shifts | Block cpu
steps cost steps cost steps cost
BCSST_26¢ 9 181 177.2 10 209 200.5 7 182 206.8
PLAT1919° 21 595 706.5 33 735 736.1 19 696 956.3

@ blocksize 3, lowest 200 modes.
b blocksize 3, all modes in [.000025, .24].

We assume that a measure of the real user cost, including i/o, is available. We
use this in a cubic model of cost, from which we obtain a least squares fit to the real
cost over the preceding ten steps. From this model we predict the real cost over the
next few steps. The cost of the final step, computing the eigenvectors, is estimated
from measurements of components of the computation as they appear elsewhere in
the recurrence. To start the process, we require that a certain minimum number
of steps be taken. The number required is a function of blocksize and the type of
problem, as indicated in Table 9. (The values in Table 9 are heuristic values derived
from extensive empirical testing.)

The rate of convergence for the as yet unconverged eigenvalues is estimated by
taking a weighted geometric average of the change in accuracy of the first uncon-
verged Ritz value over the previous five steps. From this, we extrapolate to estimate
the accuracy of the unconverged eigenvalues over a small number of additional steps.
The number of extrapolated steps is also a function of blocksize and the type of prob-
lem; the actual values used are given in Table 9. We continue the Lanczos run if the
estimated average cost per eigenvalue decreases for any of the steps over which we ex-
trapolate convergence. In addition, if we predict that all of the eigenvalues remaining
to be computed will converge in the steps corresponding to twice the number of steps
given in Table 9, we continue the recurrence to avoid computing another factorization.

TABLE 9
Steps to initialize cost model and over which convergence 1s extrapolated.

Vibration Buckling
< 10 modes | > 10 modes
Initial | Extrapolation Initial Initial Extrapolation
Blocksize steps steps steps steps steps
1 35 6 15 30 6
2 20 4 15 25 6
3 20 2 10 25 4
> 4 15 2 10 10 4

Our experience with this scheme is that the cost curve is relatively flat near its
minimum, making the choice of where to stop appear to be flexible. This is misleading;
the global minimum is quite sensitive to the local choice. To demonstrate the value of
a well tuned dynamic scheme for evaluating cost, we include some simple experiments
here. We modified our standard scheme to make it terminate early and to force it to
run ten steps beyond where it would normally stop. The results are given in Table 8
and show some sensitivity to small changes in the stopping procedure.

4.5. Choice of blocksize and starting block. The two largest benefits of the
block algorithm are in i/o cost reduction and in treating multiple eigenvalues. How-
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ever, the costs of obtaining the M-orthogonal factorization and of the eigenanalysis
of T; increase quadratically with the blocksize p. In general, it is best to choose a
blocksize as large as the largest expected multiplicity if eigenvalues of moderate mul-
tiplicities are expected. This is particularly important if many clusters of eigenvalues
are expected (Table 12). A blocksize of 6 or 7 works well in problems with rigid body
modes. We rarely find that p > 10 is cost-effective.

The effect of input/output cost is considerable. Within the MacNeal-Schwendler
NASTRAN product, which runs on a variety of commercial systems, extensive testing
resulted in a default blocksize of 7 on all systems. Input and output is particularly
expensive within NASTRAN. In an environment in which input/output cost is less
costly, a blocksize of 3 was found to be more effective. We provide our results on a
small number of experiments in §5; it is likely that the optimal blocksize would change
on other systems.

One would like to start the Lanczos algorithm with a good guess at a solution. We
begin the first Lanczos run with a randomly generated starting block. Thereafter, the
approximate eigenvectors (Ritz vectors) from unconverged Ritz values are available
as estimates of the next eigenvectors to be found. At the time that the eigenvectors
of T' are available, we do not know where the next shift will be taken. Therefore, we
take a starting block built from all of these Ritz vectors. If ¢ vectors are available,
each column in the starting block is taken to be the sum of ¢/p Ritz vectors. We
fill the block out randomly when ¢ < p. We adopted this approach after extensive
experiments comparing various choices of starting blocks, including mixtures of Ritz
vectors and random components. We did not find a significant change in the overall
cost of the eigensolution with any of the approaches.

5. Experimental results. The algorithm described in the paper was developed
as a general purpose eigensolver for the MacNeal-Schwendler Corporation’s structural
engineering package NASTRAN [18]. One of the goals in the software design was
to make the eigensolver independent of the form of the sparse matrix operations
representing the matrices involved: the matrix-block products, triangular block solves,
and sparse factorizations. The eigensolver has been used in MSC NASTRAN with
two different approaches to the sparse linear equations involved, a profile and a sparse
multifrontal factorization. In both cases the factorization and solve modules are
the standard operations of MSC NASTRAN, used directly by the eigensolver. The
code has also been incorporated in four other structural engineering packages and in
mathematics libraries supplied by Boeing Computer Services (BCSLIB-EXT)! [1] and
Convex Computer Corporation (Veclib). In all of these implementations the sparse
linear equations are solved with vectorized multifrontal codes based on the work in
[2]-[4]. The multifrontal code computes a stable symmetric indefinite factorization,
as described in [26].

In this section we report on experiments using our standard eigensolver from
BCSLIB-EXT. The experiments were all performed on a Sun 4/690 workstation with
64 megabytes of main memory. The codes are all written in Fortran 77, and were
run with the “-O” optimization option of the Sun Fortran compiler, which is quite
effective with the inner loops of the numerical operations. We note that our code is
always a block code, even when run with blocksize 1. This results in greater costs for
the analysis of the tridiagonal system, where the results of Parlett and Nour-Omid
would be available [33]. However, the cost of the tridiagonal analysis is less than 1%

1 BCSLIB-EXT is available at no cost on all Cray Research, Inc. computers.
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in general.

The test problems are drawn from the symmetric eigenproblems from the Harwell-
Boeing test collection [11]. Our code has been used to solve eigenproblems with
more than a million degrees of freedom, but the largest problem in the current test
collection is of order 15,439 and most of the problems are much smaller. As a result,
the order independent costs of the Lanczos algorithm, primarily the analysis of the
block tridiagonal systems, are more important than they would be in large production
problems. For most of the examples, we report the costs of the required eigenanalysis
as a function of blocksize. For the largest problem we also report the breakdown of
the cost in terms of the functional operations of the code.

5.1. Some empirical examples. Throughout this paper we have used some of
the problems from the Harwell-Boeing test collection [11] to demonstrate particular
aspects of our algorithms. We close by using a small subset to illustrate some of the
global behavior of the code, particularly as it concerns aspects over which the user
exercises control. We chose four test problems, listed in Table 10, which were collected
from actual industrial or research applications.

TABLE 10
Test problems.

Nonzeros in
Matrix order K M Description

BCSST_08 1074 7017 1074 television station

BCSST_ 25 15439 | 133840 | 15439 76-story skyscraper

BCSST_26 1992 16129 1922 nuclear reactor containment floor

PLAT1919 1919 17159 —a Atlantic and Indian Oceans

@ ordinary eigenvalue problem.

Two of the problems have been used as the primary examples in this paper.
They are BCSST_26, a model of a nuclear reactor containment floor used for seismic
analysis, and PLAT1919, a finite difference model of tidal currents. These models
were included in the test collection because of the large number of eigenpairs that
were required of each. In both cases the number of modes is large because the analysis
depended on knowing all of the modes in specified intervals.

Details of the eigenanalysis of the nuclear reactor containment floor problem, as a
function of blocksize, are given in Table 11. These results exhibit a pattern common to
all of the problems: The number of factorizations and Lanczos runs decrease rapidly
as the blocksize increases; the cost of the eigenanalysis initially decreases as well, but
then increases. This reflects the fact that as the blocksize increases, the length of the
Lanczos runs increase in terms of the dimension of Q;. Longer runs involve greater
costs, particularly for maintaining semi-orthogonality and for the back transformation
of the eigenvectors. For these relatively small matrices, the costs of longer runs begin
rather early to dominate the costs of factoring and applying the matrix operators.
For reference, an analysis with a single Lanczos run with a blocksize of 3 had a cost
of 543.4 for this problem, nearly three times the cost of the analysis with shifting.

The desired eigenvalues in the oceanography problem are very much in the interior
of the spectrum. There are 818 eigenvalues above and 465 eigenvalues below the values
we want. This problem was analyzed without the use of the spectral transformation
in [5], [23]. Without shifting, it was barely possible to compute the eigenvalues in
the interval [.0001, .24]; the eigenvalues in [.000025, .0001] were also of interest, but



A SHIFTED BLOCK LANCZOS ALGORITHM 37

TABLE 11
Computation of 200 eigenvalues from BCSST_26 (shift statistics).

Block- cpu Factor- Runs Block
size cost izations steps solves
1 131.1 12 12 440 475
2 143.3 11 10 254 283
3 188.5 9 8 181 204
4 272.8 8 8 182 205
5 346.3 7 7 162 182
6 301.2 4 4 93 104

were impossible to compute. Secondly, all the eigenvalues, except a singleton at zero,
are positive and occur in pairs. These multiple eigenvalues can play havoc with an
ordinary, point Lanczos algorithm. With either a blocksize of 1 or 2, it is difficult for
a code to be sure that it has exhibited the full multiplicities of the eigenvalues—the
shifting strategy must be prepared to assist. Even with shifting, the single vector
code of Ericsson and Ruhe [12], [15] was unable to cope with the multiplicities of the
eigenvalues [25].

Table 12 shows the difficulty that arises with rank determination when the block-
size is the same as the multiplicity of the eigenvalues. When we use a blocksize of 2,
we cannot distinguish between doubletons that are truly doubletons and those that
are only two of a larger number of copies of a multiple eigenvalue. As a result, our
code makes a large number of reruns to ensure that we have the full multiplicities of
eigenvalues. This is shown by the discrepancy between the number of factorizations
and the number of runs. Although the reruns incur no new cost for factorizations, they
do require more extensive use of external selective orthogonalization than would an
ordinary run. Surprisingly, the point version of the code is able to cope well with this
problem. As expected, blocksize larger than the multiplicity of 2 have no difficulties.

TABLE 12
Computation of 636 eigenvalues from PLAT1919 (shift statistics).

Block- cpu Factor- Runs Block
size cost izations steps solves
1 659.6 33 33 1461 1526
2 1101.9 19 35 1068 1137
3 696.0 21 22 595 638
4 825.2 16 16 427 458
5 953.8 15 14 362 389
6 1043.6 12 12 291 314

BCSST_08 is a model of a building housing a television studio. Its claim to fame is
the presence of isolated double and near triple eigenvalues. The lowest 24 eigenvalues
are given in Table 13. The close eigenvalues cause relatively slow convergence, which
causes our code to make more runs than we might expect. This problem can be
solved easily enough with a single run, but at increased cost. We note that the
multiple eigenvalues provide some challenges for blocksizes of 1 or 2. Details are given
in Table 14.

BCSST_25 is an incomplete seismic model of the Columbia Center, a 76-story
skyscraper in Seattle, Washington. The spectrum of this model is pathologically
difficult—the lowest 132 eigenvalues are listed in Table 15. For reference, the largest
eigenvalue of this structure is 1.51 x 108,
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TABLE 13
Lowest 26 eigenvalues of BCSST_08.

7 Ai 7 Ai 7 Ai

1 6.900 9 91.05 17 138.7

2 18.14206 10 93.45 18 139.6

3 18.1423664462086 11 130.9 19 140.6

4 18.1423664462086 12 131.5 20 141.1

5 84.78615 13 132.9 21 141.566
6 84.7864335537914 14 136.2 22 141.638
7 84.7864335537914 15 137.2 23 142.19
8 85.54 16 138.4 24 142.642

TABLE 14

Computation of lowest 20 eigenvalues from BCSST_08 (shift statistics).

Block- cpu Factor- Runs Block
size cost izations steps solves
1 37.6 5 5 179 193
2 26.0 4 3 63 71
3 22.2 2 2 39 44
4 34.3 4 3 46 54
5 33.4 3 2 31 36
6 37.9 2 2 29 34
TABLE 15

Lowest 132 eigenvalues of BCSST_25.

7 Ai 7 Ad 7 A;

1 | 9.6140 x10~* 5 | 9.85801 x10~* 69 | 9.86240 x10~*
2 | 9.7948 x10~*

3 | 9.7961 x10~*

4 | 9.8380 x10~* 68 | 9.85803 x10~* 132 | 9.86243 x107*

The smallest eigenvalues are nearly negligible when compared to the largest eigen-
value and they are very close to one another. Our code determines clusters of eigenval-
ues based on its accuracy tolerance, which defaults to 2.31x 10~ in IEEE arithmetic.
We apply this tolerance to the transformed eigenvalues, which are not close enough
to be treated as a cluster or even as two clusters and four isolated values. (Note that
if we applied the tolerance to the untransformed eigenvalues, all of these values would
be a cluster, which is not appropriate.) As a result, this problem counters our usual
shifting strategy—in this case we must take a shift very close to the eigenvalues in
order to overcome the very poor separation and slow convergence. This distribution,
eigenvalues almost, but not quite, in a cluster represents a worst case. Table 16 docu-
ments the performance of our code on this problem. We see that for this problem the
costs of larger blocksizes are more than offset by the additional power they provide in
attacking the very close and large clusters of eigenvalues. In Table 17 we present the
breakdown of cost by function within the algorithm for this, the largest of our test
problems. This breakdown is typical of larger problems in that neither the cost of
analyzing T nor of choosing shifts is significant. It is atypical in that the startup cost
is high, a result of there being a large number of vectors involved in external selective
orthogonalization.

5.2. Summary. The results in the previous section illustrate some of the char-
acteristics of the shifted block Lanczos algorithm. Only BCSST_25 is large enough
to begin to demonstrate the behavior of the algorithm on large problems. For larger
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TABLE 16
Computation of 132 eigenvalues from BCSST_25 (shift statistics).

Block- cpu Factor- Runs Block
size cost izations steps solves
1 6372.8 7 7 586 606
2 5451.8 9 9 293 320
3 3683.3 5 5 158 172
4 3935.4 5 5 126 140
5 4063.3 5 5 108 122
6 2743.3 2 2 56 61
TABLE 17

Computation of lowest 132 eigenvalues from BCSST_25 (cost breakdown).

Percent of Cost
Block- Recur- Factor- Re- Block Eigen- Start Shift
size rence ization orthog. tridiag. vector up select.
1 25 15 44 0 4 12 0
2 28 22 30 0 5 15 0
3 33 18 33 1 10 4 0
4 33 16 35 1 10 4 0
5 34 16 35 1 10 5 1
6 32 10 40 1 16 1 1

problems we expect to see the cost of the factorization and linear equation solutions
to increase faster than linearly. Assuming that the eigenvalue distributions do not
change, the cost of reorthogonalization, of generating the starting block, and of the
eigenvector computation will increase linearly with the change in problem size. The
block tridiagonal eigenanalysis and the shift selection should remain constant and
their contributions to cost will become even smaller. We note that the cost of the
necessary reorthogonalizations is an important fraction of the cost—this is a strong
argument for preserving only semi-orthogonality rather than complete orthogonal-
ity. We remind the reader that our cost measures include a factor for i/o traffic, an
essential ingredient in preserving semi-orthogonality.

The reader will see the difficulty in making an a priori choice of blocksize. The
advantages and disadvantages of the block algorithm are clearly demonstrated, but we
see no optimal choice for blocksize. A choice of three is always good on these problems
on our Sun workstation, but is likely to be less than optimal for a vibration problem
with six rigid body modes. Systems that impose higher costs for i/o will make higher
blocksizes more effective, particularly when the problems are large enough that the
factored matrices must reside on secondary storage.

These issues should be kept in the perspective of the power of the spectral trans-
formation. None of the problems described here is solvable in any practical sense
using the naive reduction to standard form. For example, the oceanography problem,
PLAT1919, was analyzed in [5], [23] without any transformation—the desired eigen-
values were not close to appearing after N steps. (In unreported experiments, 3N
steps had resulted in little improvement.) Although it is possible to solve some of
the simpler problems by inverting the problem, as in (2), this is clearly not sufficient
for all of the problems. The oceanography problem, PLAT1919, is singular, so some
nontrivial shift is required. Even with a shift at the lower endpoint, .000025, a single
Lanczos run to compute the lowest 200 eigenvalues above this point had a cost of 5382
for blocksize 3. In contrast, our standard shifted code with the same blocksize had
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a cost of 696 for computing all 636 desired eigenvalues. The Columbia Center model
has the same characteristics. The naive reduction would result in a problem with
separations of 107!3 for the “well separated” eigenvalues; the simple reciprocal trans-
formation would be clearly inadequate to begin to solve this problem. It is only with
the combined power of the block Lanczos algorithm and the spectral transformation
that we can solve these problems in a reasonable amount of time.

A. Matrix inertias. We need to interpret the number of negative eigenvalues
of K — oM and K — 0K in terms of the eigenvalues of the original vibration or
buckling problems. The result we want to prove follows in Table 18. We use this
result to conclude that

V(K —oaM) — v(K — o1 M) = number of eigenvalues in (o1, 03),

where we assume that o5 > o1. In the case of buckling analyses we further assume
that both ¢y and 5 have the same sign.

TABLE 18
Interpretation of v(K — oM) or v(K — 0Kjg).

Vibration analysis:
M positive definite # of eigenvalues < o
M positive semidefinite | (# of eigenvalues < o) + ~
_ 0 some cases
v= dim(N(M))  other cases
Buckling analysis:
K positive definite # of eigenvalues in (0,0) or (o,0)
K positive semidefinite | (# of eigenvalues in (0,0) or (¢,0)) +
_ 0 o of one sign
7= dim(N(K)) o of other sign

There are four cases, which will be considered in pairs. In all cases we assume
that the problem is a definite generalized symmetric eigenproblem, i.e., that there
exists some linear combination a K + SM that is positive definite.

A.l. Kz =AMz with M positive definite. We can apply the obvious reduc-
tion to standard form. The eigenvalues of Kz = AM z are the same as the eigenvalues
of C' = LJT; KLJQT, where Lps is the Cholesky factor of M. It follows that the number
of eigenvalues of C' less than ¢ is the same as the number of eigenvalues of Kz = AMz
less than . But C' — o[ is congruent to Ly (C — oI)L%, and this is simply K — oM.
Thus, the decomposition of K —oM gives the number of eigenvalues less than . Ob-
viously, the interpretation of the inertia has the same meaning here as in the ordinary
eigenvalue problem.

A.2. Kz = AMz with M positive semidefinite. Signs must be assigned to
the infinite eigenvalues when M is singular. Assume that M is positive semidefinite,
with p zero eigenvalues. Then there exists a nonsingular matrix W so that W MW7
is the two-by-two block-partitioned matrix

r (00
WMW_<0 1)’

where I is an (n — p) x (n — p) identity matrix. Partition WKW’ = C conformally

as
- Ci C7, >
WEWT = 1 22t )
' <C21 Cas
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Some linear combination aK + SM is positive definite, from which it follows that
a(WEKWT) + B(WMW?T) is positive definite. But a positive definite matrix has
positive definite principal minors, which implies that aC'; is positive definite. Let y
satisfy (WKW7T)y = A\(WMWT)y and partition y conformally as [y;, y2]7. Then

(31) Ciyi +CHy, =0
and
(32) Ca1y1 + Caya = Aya.

Equation (31) then implies that
= _Cl_llcg‘qyl
Substituting in (32), we obtain
(Ca2 — C721C1_11€2Tl)y2 = Ayz.

Thus, the finite eigenvalues of Kz = AM z are the eigenvalues of the Schur complement
of C11in C'.

By Sylvester’s theorem the inertia of (K — oM) is the same as the inertia of
WEWT — eWMWT. But the partitioned form of the LDLT decomposition of
WEWT — eWMW? has as its (1,1) block the decomposition of 1y, and as its
(2,2) block the decomposition of (Ca22 — 6'216'1_11 CT) — oI. The inertia for the entire
matrix is offset by the inertia of the (1,1) block. The offset is constant—it describes
the sign given to the infinite eigenvalues. That all of the infinite eigenvalues have
the same sign is due to the fact that a positive definite linear combination of K and
M exists, that is, that the problem is a definite generalized symmetric eigenproblem
[13]. The difference between v(K — o1 M) and v(K — oo M) will still be the number
of eigenvalues in [, 02), since the constant term cancels.

Furthermore, in vibration analysis, we know that both K and M are positive
semidefinite. It follows that both « and  will be positive when M is only semidefinite.
The positive semidefiniteness of K then implies that C; is a positive definite matrix,
so ¥(C11) = 0. Thus, the inertia of the factored matrix retains exactly the same
meaning for the positive semidefinite vibration case as for the positive definite case.

A.3. Kz = AKsz with K positive definite. In buckling analysis, only K has
any definiteness properties. We can invert the problem when K is positive definite.
Thus

Kz = A K5z
implies
. [ .
Ksx = X[XCL‘ =uKzx,

and all the eigenvalues g in the second equation are finite. This transformed problem
is in the standard (Ks, K') form in which the right-hand side matrix, K, is positive
definite. We will determine the number of eigenvalues of (K5, K) that lie in the image
of the interval of interest in the original problem. Thus, to determine the number
of eigenvalues of Kz = AKsz less than o, we find the number of eigenvalues of the
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inverted problem (K, K) in the interval(s) in the variable y = % that corresponds to
the interval (—oo, ) in the variable A.

There are three subcases that must be considered. The first is the case ¢ = 0.
The interval (—oo,0) for A is mapped to the interval (—oo,0) in % Thus, the number
of negative eigenvalues of Kz = AK;sz is the same as the number of eigenvalues of
(Ks, K) less than 0. This is simply the number of negative eigenvalues of Ks, v(Ks).

The second case is the case ¢ < 0. The transformation from A to i+ transforms o

A

to % The number of eigenvalues in (—oo, o) is the same as the number of eigenvalues

of (Ks, K) in the interval (%, 0). This is

1
v(Ks)—v (Kg — —K) ,
o
which, because o is negative, is the same as
v(Ks) —v(K — oKs).

Note that the number of eigenvalues between ¢ and 0 is simply v(K — o Kjy).

The third case is ¢ > 0. In this case, the interval (—oo, ¢) in A must be treated as
the union of the interval (—oo, 0) and the interval [0, ¢). There are v(Kjs) eigenvalues
in the first subinterval. The second subinterval is transformed into (%, +00). The
union has

1
v(Ks) + 7 <K5 - —K>
o
or
v(Ks)+ v(K — oK)

eigenvalues. Even in this case v(K — oK) is the number of eigenvalues between 0
and o.

The buckling problem will have infinite eigenvalues if K is singular. However, the
signs of these eigenvalues are irrelevant to the interpretation of the inertias because
the interpretation always considers only finite subintervals.

A.4. Kz = AMKsz with K positive semidefinite. The most general case we
consider is a buckling analysis in which K is only positive semidefinite. We combine
the analysis for the semidefinite vibration case with the positive definite buckling case
to assign signs to the zero eigenvalues.

We assume K is semidefinite, with P zero eigenvalues. As before, there exists a
nonsingular matrix W such that

wewr _ (00
WKW _<0 I>'

Partition /WIQ/WT = FE conformally as
Ey Ej
Esr Ea )’

The eigenvalues of KX = K5 XA are those of WEWTY = /WKH/J?TYA. Let y be an
eigenvector, partitioned conformally as [y, y2]”. Then

(33) E11y1 —I— EglyZ = 0
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and

A(E2131 + Fa2)ya = ya.

As before the (1,1) block of the transformed linear combination, $F11, is a positive
definite matrix. Equation (33) then implies that

y1 = —E7 EL o,
or
M B — Eo1 ET EL ) ya = vo.

Thus, the finite, nonzero eigenvalues of Kz = AK sz are the reciprocals of the nonzero
eigenvalues of the Schur complement of £1; in E. P P

The partitioned form of the LDLT decomposition of WKW — W KsW7 has as
its (1,1) block the decomposition of —oF11, and as its (2,2) block the decomposition
of I — 0(Faz — E21E1_11E2Tl). The Schur complement block is in the form of §A.3,
taking the identity matrix as M. Again, the inertia of the full matrix is the inertia
of I — o(Fag — E21E1_11E2Tl) offset by the inertia of the (1,1) block. Notice that the
offset depends on the sign of the shift—it describes the signs of the eigenvalues of
—oF11. Because Ei; is definite, either all the eigenvalues of —o E; are positive or
all are negative. Thus, the offset will be zero for shifts of one sign and nonzero for
shifts of the other sign. Still, the difference between v(K — o1 Ks) and v(K — 02K5)
will still be the number of eigenvalues in [o1,02), as long as both shifts have the same
sign. The dimension of the nullspace of K, v(E11), is often known adventitiously; if
not, it can be estimated by factoring K — pI, where p is chosen smaller than the least
nonzero eigenvalue of K, but large enough so that the factorization is stable.
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